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The paper describes a new hybrid finite-volume (FV)/particle method developed
for the solution of the PDF equations for statistically stationary turbulent reactive
flows. In this approach, the conservation equations for mean mass, momentum, and
energy conservation are solved by a FV method while a particle algorithm is employed
to solve the fluctuating velocity-turbulence frequency-compositions joint PDF trans-
port equation. The mean velocity and pressure are supplied to the particle code by the
FV code which in turn obtains all the Reynolds stresses, the scalar fluxes, and the reac-
tion terms needed in the FV code. An important feature of the method is the complete
consistency between the set of equations solved by the FV and particle methods. The
algorithmic and numerical issues arising in the development of the hybrid method
are studied in the simple setting of the stochastic ideal flow equations. Numerical
results are obtained for 1D reactive stochastic ideal flow to demonstrate numerical
properties of the method. The total numerical error is identified as statistical error,
bias, spatial truncation error, and temporal truncation error. In contrast to the self-
contained particle method, the bias is found to be negligibly small. It is shown that all
the numerical errors converge at the expected rates. Finally, the global convergence
of the hybrid method is demonstrated and the optimal strategy for time-averaging
that gives the best global convergence rate is investigated.c© 1999 Academic Press
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1. INTRODUCTION

The probability density function (PDF) method has proven to be a useful computational
tool for analysis of complex turbulent reacting flows [1]. Compared to traditional moment-
closure methods, the PDF method offers the distinct advantages of being able to treat
convection and finite-rate nonlinear chemistry exactly [2, 3]. In addition to this, body forces
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and the mean pressure gradient also appear in closed form, but the fluctuating pressure
gradient and molecular transport terms need to be modeled [2].

In PDF methods, a modeled evolution equation is solved for the one-point joint PDF of
the selected flow variables. The PDF transport equation is derived from the Navier–Stokes
equations and the unclosed terms are modeled by coupled model stochastic differential
equations (SDEs) [3]. Due to the high dimensionality of the PDF, conventional numerical
techniques such as finite-difference and finite-element methods are computationally pro-
hibitive. However, efficient solutions to the modeled joint PDF transport equation are made
feasible by use of a particle-mesh Monte Carlo method in which the PDF is represented by
a large set of stochastic particles [2]. We note that the PDF equations can be alternatively
solved by a purely particle Monte Carlo method through use of smoothed particle hydrody-
namics (SPH) where no field equations are solved and neither is a mesh needed to extract
statistical means [5]. The PDF equations can be modeled and solved by either an Eulerian
or a Lagrangian method. In the Eulerian method [4] the particles are located at grid nodes
in physical space while in the Lagrangian method the particles are continuously distributed.
The Lagrangian viewpoint has been central to the PDF methods for over a decade, since
it makes modeling simpler and offers an intuitively obvious solution algorithm [1, 3]. The
particle properties evolve according to model stochastic differential equations (SDEs), and
there are usually one or more mean fields that are determined separately by solution of
partial differential equations (PDEs) on a mesh. Various mean fields can also be estimated
from the particles and we refer to these as “particle fields” to distinguish them from the
“mean fields” obtained from PDEs. The mean and particle fields and their use in the par-
ticle equations make an important distinction between different PDF solution algorithms.
Table I summarizes attributes of different Lagrangian solution algorithms some of which
are discussed further in the following section.

1.1. Review of PDF Algorithms

In some early applications of PDF methods, a finite volume (FV) method is coupled with a
particle method based on the joint PDF of compositions (or of velocity and compositions) to
provide additional turbulence closure equations. Such a hybrid algorithm has been proposed
by Anandet al. [21] and Haworth and El Tahry [22] in which the modeled transport
equation for the joint PDF of velocity and composition is solved by the Monte Carlo method,
while a SIMPLE [6] based FV algorithm is employed to solve the Reynolds-averaged flow
equations. In this approach, the FV code provides the Monte Carlo code with the mean
velocity, pressure, and rate of turbulence dissipation, and the Monte Carlo code in turn
supplies the Reynolds stresses and mean density to the FV code. The mean velocity appears
to be a duplicate field, i.e., it is represented both as a particle field and as a mean field.

A similar hybrid method has also been developed by Correa and Pope [14] and imple-
mented in the codePDF2DS. This method makes minimal use of particle properties, i.e.,
the mean velocity, pressure, turbulence kinetic energy, and rate of dissipation needed in
the particle equations are supplied by the FV method which in turn gets the mean particle
density field from the Monte Carlo code. The duplicate fields include the mean velocity
and Reynolds stresses. The same algorithm has also been used by Chang [15], Tsai and Fox
[16], Wouterset al. [18], and Nauet al. [19].

As mentioned above, some fields are represented as duplicate fields, which raises ques-
tions of consistency. In these hybrid methods, the consistency conditions are not fully
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TABLE I

Attributes of Different Lagrangian PDF Solution Algorithms a

Particle equations Mean field equations

Particle Mean Particle
fields fields fields used

used in used in Mean in mean
Particle particle particle field field Duplicate

Method properties equations equations variables equations fields

Composition jpdf m∗,Y∗ Ỹ, ρ̄ Ũ, k, ε Ũ, 〈p〉, k, ε ρ̄ —
(Pope [2])

Composition jpdf m∗,Y∗, z(Y∗) Ỹ Ũ, ρ̄, k, ε Ũ, 〈p〉, z̃ ˜̇z, 〈u∗i z∗ | x〉 z̃
(Jaberiet al. [20]) ρ̄, k, ε

Velocity-composition m∗,U∗,Y∗ Ỹ, ρ̄ Ũ, k, ε Ũ, 〈p〉, k, ε ρ̄ Ũ, 〈ui u j 〉
jpdf, minimal use of 〈p〉
particle properties
(PDF2DS[14])

Velocity-composition m∗,U∗,Y∗ Ỹ, k Ũ, ε, 〈p〉 Ũ, 〈p〉, ε ρ̄, 〈u∗i u∗j | x〉 Ũ
jpdf, maximal use of
particle properties
(Anandet al. [21]
Haworth and
El Tahry [22])

Velocity-frequency- m∗,U∗, ω∗, Y∗ Ũ, Ỹ, ρ̄, ω̃, Ä, 〈p〉 〈p〉 〈ρ∗U∗ | x〉 —
composition jpdf 〈u∗i u∗j | x〉
(PDF2DV[9])

Velocity-frequency- m∗,U∗, ω∗, Ũ, Ỹ, ω̃, 〈p〉, — — — —
composition jpdf Y∗, p∗ 〈u∗i u∗j | x〉
SPH (Welton and
Pope [5])

Velocity-frequency- m∗, u∗, ω∗, Ỹ, ρ̄, ω̃, Ä, Ũ, 〈p〉 Ũ, 〈p〉, ε̃s, ρ̄ 〈u∗i u∗j | x〉, ˜̇εs ρ̄, ε̃s

composition jpdf Y∗, h∗ 〈u∗i u∗j | x〉 〈u∗i ε∗s | x〉
(present)

a k, ε, z, ˜̇z, 〈u∗i z∗ | x〉, ω, andÄ are the mean turbulent kinetic energy, the mean dissipation rate, an energy var-
iable, the mean rate of change in the energy variable, i.e.,˜̇z= dz̃/dt, the scalar fluxes, the instantaneous turbulent
frequency, and the conditional mean turbulent frequency, respectively. The definition of means, e.g., ˜ω, and the
other variables are the same as defined in the paper.

satisfied even at the level of turbulence closures due to the inconsistency of the turbulence
models employed in FV and PDF submodels. For example, the simplified Langevin model
(SLM) is equivalent to the Rotta model at the level of second moments [17]. Thus, use of
a k − ε model in the FV code and of a SLM PDF model in the particle code cannot be
consistent. As shown by Wouterset al.[18], the level of consistency mainly depends on the
equivalence of the turbulence models used in FV and PDF methods.

In addition to the consistency problem, it has been found that the use of a noisy particle
density field in the mean field equations causes a serious convergence problem that can
hinder and even prevent convergence of the FV method (see, e.g., Chang [15]). An alternative
method developed by Jaberiet al. [20] is designed to overcome the difficulty caused by the
noise in the particle density field. In this method, in addition to other quantities, mean field



A HYBRID FV/PARTICLE METHOD 345

equations are solved for the mean density and mean energy variable. The mean pressure is
then obtained from the mean equation of state. The resulting noise in the mean density field
is substantially reduced compared to that of the particle density field.

With the relatively recent development of a model for turbulence frequency (or time scale),
the velocity-frequency-composition joint PDF method forms a complete turbulence model
which requires no further information except for fluid properties and initial and boundary
conditions [7, 8]. Therefore, this model allows development of a consistent self-contained
particle method. Such a self-contained particle-mesh based Monte Carlo algorithm has been
developed and implemented in thePDF2DVcode in which, except for mean pressure field,
the particle fields are used throughout in the particle equations [9]. WhilePDF2DVsucces-
sfully solves the modeled velocity-frequency-compositions joint PDF transport equation,
two important shortcomings have been identified [10, 12]:

(i) a complicated algorithm is required for calculation of the mean pressure field, that
needs damping and dissipation, and may not be very accurate on the grids typically used
[11];

(ii) the use of the particle mean velocity in the particle equations has been found to
lead to substantial deterministic error called bias [12].

It is emphasized here that all the shortcomings listed above are related to experience with
the versions of thePDF2DVcode which represent only a particular implementation of self-
contained particle/mesh method. However, there has been reported no other implementation
of a self-contained particle/mesh algorithm which has been extensively tested.

1.2. Present Method

These deficiencies in the self-contained particle method motivate the development of a
new hybrid algorithm which combines the best features of FV and particle methods to avoid
the shortcomings just mentioned. In this approach, the conservation equations for mean
mass, momentum, and energy, coupled with a mean equation of state are solved by a FV
method while a particle-mesh based Monte Carlo algorithm is employed to solve the mod-
eled transport equation of joint PDF for fluctuating velocity, turbulence frequency, enthalpy,
and compositions. The FV and particle codes are linked as follows. The FV code provides
the particle code with the mean velocity and pressure while the particle code supplies all
the turbulence quantities and the chemical source terms needed in the FV code. There-
fore, the bias error is substantially reduced by the use of the smooth mean velocity field
and the need for additional turbulence and chemistry models in the FV method is avoided.
Furthermore, the mean pressure is easily computed from the mean equation of state. In
this method, the mean density and mean sensible internal energy are duplicate fields. It is
emphasized that this hybrid algorithm is completely consistent at the level of turbulence
closure so that the consistency conditions are easily satisfied.

The purpose of this work is to address the algorithmic and numerical issues associated
with the present hybrid FV/particle method such as coupling, convergence, and statistical
and deterministic errors which have not been examined extensively in any of the previous
studies on hybrid methods.

The approach taken here is to study all these issues in the simpler setting of reactive
stochastic ideal flow. This is a non-physical system in which, from random initial conditions,
flow properties evolve deterministically according to the ideal flow equations. It is especially
valuable that for this class of flows there is an exact correspondence between particle and
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field equations. In addition to this, even 1D stochastic ideal flows have the ingredients needed
to address the issues arising in the context of developing a hybrid FV/particle algorithm
for tubulent reacting flows. Therefore, the analysis is done in the simple one-dimensional
setting that makes it possible to consider extreme cases such as very large numbers of
particles per cell and time-averaging over long time periods.

1.3. Outline of the Paper

The paper starts with a brief description of the governing equations of reactive stochastic
ideal flow: The thermochemistry is reviewed and the systems of equations solved by the
particle and FV methods are presented. The mean fields used in the particle system and
the particle fields used in the FV system are shown and the consistency conditions are
identified. The numerical methods are discussed in Section 3. The FV and particle schemes
are described in the context of the hybrid FV/particle algorithm. Numerical results are pre-
sented and discussed in Section 4. Some sample flow calculations are shown and a detailed
analysis of the numerical errors arising in the hybrid method is presented. A comprehensive
convergence study is also presented in this section. The results clearly demonstrate consis-
tency, stability, convergence, accuracy, and efficiency of the hybrid method. Conclusions
are drawn in Section 5. Finally, the derivation of the reactive stochastic ideal flow equations
is provided separately in the Appendix.

2. GOVERNING EQUATIONS

A number of numerical and algorithmic issues arising in the development of a hybrid
FV/particle method for turbulent reactive flows can be studied in the simpler system of
the stochastic ideal flow of a reactive gas mixture. The purpose of this section is briefly to
review the thermochemistry involved and to describe the evolution equations to be solved
by the particle and FV methods. The derivation of the equations is supplied in the Appendix.

2.1. Thermochemistry

The thermochemical state of a homogeneous mixture of ideal gases is characterized by the
pressurep, the temperatureT , and the mass fractions of theNs speciesY={Y1,Y2, . . . ,YNs}.
As described in the Appendix, for each species (α= 1, 2, . . . , Ns), the following properties
are defined: the gas constantRα, the specific enthalpyhα(T), and the specific sensible
internal energyεsα (T). The corresponding mixture properties (i.e.,R(Y, T), h(Y, T), and
εs(Y, T)) are defined by, for example,

h(Y, T) ≡
∑
α

Yαhα(T). (1)

The ideal gas law is

p = ρRT, (2)

whereρ is the density. This can also be written as

p = ρκεs, (3)
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whereκ is defined by

κ(Y, T) = RT

εs
. (4)

Note that ifR andcv are constant thenκ is the constantR/cv = γ − 1 whereγ is the ratio
of specific heats. In general,κ can be expected to depend weakly onY andT .

The net chemical reaction rate for speciesα is Sα, so that, for a homogeneous mixture,
the mass fractions evolve by

dYα
dt
= Sα(Y, p, T). (5)

2.2. Stochastic Ideal Flow

As an intermediate step between ideal and turbulent flows, we consider here a non-
physical system, in which—from random initial and inflow boundary conditions—the flow
properties evolve deterministically according to the ideal flow equations. The governing
equations are described here in the context of the hybrid FV/particle method.

2.2.1. Particle system.The flow equations written in the convective form describe the
evolution of the properties of the fluid particles. The particle system is described here for a
closed system, i.e., one in which there is no mass flow in or out. The results are the same for
an open system but the analysis is more complicated. The intrinsic properties of a general
particle include massm∗, positionX∗(t), fluctuating velocityu∗(t), mass fractionsY∗(t),
and enthalpyh∗(t). It is emphasized that these properties are random and that there are
no underlying random fields. There are, however, non-random pressurep(x, t) and mean
velocity Ũ(x, t) fields. The thermochemical state of the particles is completely determined
by Y∗(t), h∗(t), and the interpolated pressurep∗(t). Note that, here and below, an asterisk
on a field variable (e.g.,p∗) denotes the value of the field evaluated at the particle location,
i.e.,

p∗(t) ≡ p(X∗[t ], t). (6)

The intrinsic properties (m∗,X∗, u∗,Y∗, andh∗), the interpolated mean velocitỹU∗ and
mean pressurep∗ are called the primary properties. These properties contain no redundancy:
no one of them can be deduced from the others. Nevertheless, various secondary particle
properties can be derived from the primary properties such as densityρ∗, specific volume
v∗ ≡ 1/ρ∗, temperatureT∗, and sensible internal energyε∗s .

From the particle properties, various particle fields can be estimated. Theexpected particle
mass densitȳρ(x, t) is defined by

ρ̄(x, t) = q(x, t) ≡ 〈m∗δ(X∗[t ] − x)〉. (7)

For a particle propertyφ∗, themass-weighted conditional expectationis defined by

φ̃(x, t) ≡ 〈φ∗(t) | X∗(t) = x〉
= 〈m∗φ∗(t)δ(X∗[t ] − x)〉/ρ̄(x, t). (8)
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Note that forφ ≡ 1, φ̃ is unity. Thevolume-weighted conditional expectationis defined by

φ̄(x, t) ≡ 〈φ∗(t)v∗(t) | X∗(t) = x〉ρ̄(x, t)
= 〈m∗φ∗(t)v∗(t)δ(X∗[t ] − x)〉. (9)

For φ≡ 1, the requirement̄φ= 1 leads to a consistency condition that is discussed in
Subsection 2.2.3.

The equation of state (Eq. (3)) for the particle properties is

p∗ = ρ∗κ∗ε∗s . (10)

The velocity of the particle is

U∗(t) = Ũ∗ + u∗(t), (11)

that is, the sum of the local mean and the particle’s fluctuation. The particles move, like
fluid particles, with their own velocity

d X∗j
dt
= U ∗j , (12)

and the other particle properties evolve in the same way as fluid-particle properties in ideal
flow (in which the viscosity, thermal conductivity, and molecular diffusivity are zero):

dU∗j
dt
= − 1

ρ∗

(
∂p

dxj

)∗
, (13)

dY∗j
dt
= Sj (Y∗, p∗, T∗), (14)

dh∗

dt
= 1

ρ∗
dp∗

dt
. (15)

In the enthalpy equation,dp∗/dt denotes the rate of change of pressure following the
particle.

Equations (10)–(15) fully describe the evolution of the particle properties and form a
non-redundant system, i.e., none of them can be derived from the others. It is important to
note that the other particle equations described below as well as all the mean field equations
described in Subsection 2.2.2 are derived from these equations together with the auxiliary
consistency conditions. (See the Appendix for the derivations.)

The fluctuating velocity is defined as

u∗j = U ∗j − Ũ ∗j , (16)

and it evolves by (cf. the Appendix)

du∗j
dt
= −u∗i

(
∂Ũ j

∂xi

)∗
+
(

1

ρ̄∗
− 1

ρ∗

)(
∂p

∂xj

)∗
+ 1

ρ̄∗

(
∂

∂xi
[ρ̄〈u∗i u∗j | x〉]

)∗
. (17)
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Deduced from Eq. (15), the evolution equations for the sensible internal energyε∗s = h∗ −
p∗v∗ − ∑α ε

so
α Y∗α and the sensible enthalpyh∗s= ε∗s + p∗v∗ are given by

dε∗s
dt
= −p∗

dv∗

dt
+ ε̇∗s, (18)

dh∗s
dt
= v∗ dp∗

dt
+ ε̇∗s, (19)

whereεso
α is defined by Eq. (67) in the Appendix and

ε̇∗s = −
∑
α

εso
α

dY∗α
dt

. (20)

Note that the mean quantities appearing in the particle evolution equations are interpolated
from the corresponding particle or mean fields on the particle position, for instance, ¯ρ∗(t) ≡
ρ̄(X∗[t ], t). It is emphasized here that, contrary to the PDF equations, the particle evolution
equations of the stochastic ideal flow are not stochastic.

2.2.2. Finite volume system.The system of equations solved by the FV method is
directly derived from the particle evolution equations and the particle equation of state so
that it is completely consistent with the particle system. For the reacting stochastic ideal
flow, the conservation equations for the mean mass and momentum derived in the Appendix
are

∂ρ̄

∂t
+ ∂

∂xi
(ρ̄Ũ i ) = 0, (21)

∂

∂t
(ρ̄Ũ j )+ ∂

∂xi
[ρ̄Ũ i Ũ j + pδi j ] = Rj , (22)

where

Rj = − ∂

∂xi
[ρ̄〈u∗i u∗j | x〉]. (23)

The energy variable used is the total sensible energyẽs defined as

ẽs = ρ̄
(
ε̃s + 1

2
Ũ i Ũ i

)
, (24)

which evolves by

∂ẽs

∂t
+ ∂

∂xi
[Ũ i (ẽs + p)] = ˜̇es + p

∂Ŭ i

∂xi
− ∂Gi

∂xi
+ Ũ i Ri , (25)

where

˜̇es = −ρ̄
∑
α

εso
α

〈
dY∗α
dt

∣∣∣∣ x
〉
, (26)

Gi = ρ̄〈u∗i ε∗s | x〉, (27)

Ŭ i = Ũ i − Ū i . (28)
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Finally the FV system is closed by the mean equation of state given by

p = κ̆
(

ẽs − 1

2
ρ̄Ũ i Ũ i

)
, (29)

where

κ̆ = 〈κ
∗ε∗s | x〉
〈ε∗s | x〉

. (30)

As can be seen from the field equations (Eqs. (21), (22), and (25)), the terms on the left-
hand side are in the same form as the compressible Euler equations while, as far as the FV
method is concerned, the terms on the right-hand side do not contain time derivatives, and
they are all supplied by the particle algorithm. Therefore, these equations may be considered
as the compressible Euler equations with added source terms.

2.2.3. Consistency conditions.The mean density and the mean sensible internal en-
ergy are represented as duplicate fields which, together with the requirements that mean
fluctuating velocity be zero and the particle volume be equal to the geometric volume oc-
cupied, raise the question of consistency. Since all the equations stem from a consistent,
non-redundant set of equations, namely the particle equations (Eqs. (11)–(15)) and the par-
ticle equation of state (Eq. (10)), the present hybrid method is completely consistent at the
equations level; i.e., the exact solutions of the equations yield identical duplicate fields.
However, the consistency conditions may not be fulfilled at the level of numerical solutions
depending on the accuracy of the numerical solution algorithms.

The conditions that need to be satisfied for consistency are

〈u∗ | x〉 = 0, (31)

〈ε∗s | x〉 = (ε̃s)FV, (32)

(ρ̄)P = (ρ̄)FV, (33)

〈m∗v∗δ(X∗ − x)〉 = 1, (34)

where the subscriptsFV andP denote the FV and particle fields, respectively. It is empha-
sized that these conditions are not all independent. Forφ≡ 1, Eq. (9) yields

〈m∗v∗δ(X∗ − x)〉 = 〈v∗ | x〉(ρ̄)P = 1. (35)

The particle equation of state (Eq. (9)) isv∗ = κ∗ε∗s/p∗. Thus

〈m∗v∗δ(X∗ − x)〉 =
〈

m∗κ∗ε∗s
p∗

δ(X∗ − x)
〉

= 〈κ
∗ε∗s | x〉

p
(ρ̄)P

= (ρ̄)P

p
κ̆〈ε∗ | x〉, (36)
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where Eq. (30) has been used. Substituting Eq. (36) and the FV equation of statep=
κ̆(ρ̄)FV (ε̃s)FV into Eq. (35) results in

〈v∗ | x〉(ρ̄)P = (ρ̄)P

(ρ̄)FV

〈ε∗s | x〉
(ε̃s)FV

= 1. (37)

Equations (36) and (37) imply that Eqs. (31) and (32) are the only independent consistency
conditions at the level of numerical solutions. For if these are satisfied, Eq. (37) yields

(ρ̄)P = (ρ̄)FV, (38)

and it then follows from Eqs. (35) and (37)

〈m∗v∗δ(X∗ − x)〉 = 1. (39)

In summary: the method is completely consistent at the level of the partial differential
equations. That is, the exact solutions to these equations yield identical duplicate fields. At
the level of the numerical solutions, there are just two independent conditions that ensure
the consistency of the method, namely Eqs. (31) and (32).

3. NUMERICAL METHODS

3.1. Coupled FV/Particle Algorithm

The FV and particle methods are periodically used in the hybrid algorithm to solve their
respective equations. Each period is called an “outer” iteration which consists of FV and
particle “inner” iterations. The hybrid FV/particle algorithm can be designed to run in a
tightly or loosely coupled manner. In this study, a loosely coupled algorithm has been
adopted in which an outer iteration is completed by running the FV code until convergence
and the particle code for a specified number of time steps. Note that tight coupling, in which
both the FV and particle codes are run for a single time step to complete an outer iteration, is
in fact a special case of loose coupling. Tight coupling is useful if time accuracy is desired:
but we are interested here only in statistically steady solutions.

The early outer iterations produce a noisy solution close to a statistically stationary state
and the subsequent iterations are performed to reduce the noise. As will be discussed later in
detail, time-averaging is an effective way to reduce the statistical fluctuations in the particle
fields when it is applied during a statistically stationary state. Therefore time-averaging is
not performed until the outer iteration is deemed to be close to a statistically stationary
state, say, at thekoth outer iteration. The total number of time steps to be performed in the
particle code duringkth outer iteration is then determined according to

N(k)
TA =

{
M0 if k < ko

βk−k0 MTA if k ≥ ko,
(40)

whereM0, β, andMTA are positive constant parameters, taken in the present study as 20,
2.0, and 8, respectively, unless specified otherwise. Note that, in each outer iteration with
k ≥ ko, the time-averaging is based on just theN(k)

TA particle time steps performed in that
outer iteration.
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FIG. 1. Flow chart of the hybrid FV/particle method.

The overall solution sequence can be summarized as follows. The FV code is run until
residuals are decreased to a specified tolerance value (εtol) and the required mean fields
are passed to the particle code. The particle code is then run for a certain number of time
steps (cf. Eq. (40)) and the necessary quantities are transferred back to the FV code. This
process is repeated until global convergence is attained. The issue of the global convergence
is discussed in Subsection 4.3 in detail. The flow chart for the hybrid algorithm is shown in
Fig. 1.

3.2. Finite Volume (FV) Method

As mentioned earlier, the field equations solved by the FV method are of the same
form as the compressible Euler equations with added source terms, so they can be solved
by established techniques such as time-marching algorithms. In this paper, we employ a
diagonalized implicit scheme based on that of Caughey [23] with a local preconditioning
method developed by Muradoglu and Caughey [24]. The preconditioning is needed to
remove the well known numerical difficulties due to eigenvalue stiffness caused by the
large disparity between the characteristic wave speeds at low Mach numbers [25]. The
details of the diagonalized implicit scheme and the preconditioning method can be found
in Muradoglu and Caughey [24].
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The source terms in the mean energy equation (Eq. (25)) can introduce an additional stiff-
ness causing the numerical algorithm to be unstable unless an extremely small time step is
used. The point implicit method developed by Bussing and Murman [27] has proven to be
an effective way to remove the time step restriction set by stiff source terms. However, since
the source terms in the mean field equations are not known as functions of the dependent
variables, exact linearizations for use in the point implicit method is not possible. Therefore,
a technique similar to that devised by Palmer [26] has been developed to overcome the stiff-
ness problem without implicit treatment of the source terms. Motivated by the observation
that large source terms compared to the convective fluxes can cause non-physical zero or
negative values of density that lead to instabilities, the method is designed to limit the rate
of change in density and not to allow non-physical solutions. The algorithm is as follows:

(i) obtain the increment in density fieldδρ from solution of the continuity equation;
(ii) find the maximum increment in absolute values|δρ|max over the entire field, and if

it is larger than a prescribed tolerance, i.e.,αρρref, scale the increments as

δρ = δρ

|δρ|max
αρρref, (41)

whereρref is the reference density andαρ is a prescribed constant typically taken as 0.01;
(iii) update the density

ρn+1 = max
(
ερ · ρref, ρ

n + δρ), (42)

whereερ is a small positive number with typical value 0.005.
This method prevents wild swings in the density field and allows the solution to relax

smoothly to the steady-state. Our numerical experience shows that this simple procedure
maintains stability of the numerical algorithm even for very large source terms, e.g., corre-
sponding to maximum density ratio as large as 25.

The boundary conditions are specified as follows. The mean velocity and density at the
inlet and the pressure at the outlet are fixed to the physical values while the pressure at the
inlet and the mean velocity and density at the outlet are extrapolated from the computational
domain. This treatment is consistent with the characteristic theory since we are interested
here only in subsonic flows.

This FV scheme accepts both a uniform or non-uniform grid but a uniform grid is used
in the present study for simplicity.

3.3. Particle Method

The particle method described here is developed to solve the particle equations in the
context of the hybrid algorithm. In this method, fluid particles are modeled by an ensemble
of notional particles which are distributed in the physical space and carry the intrinsic
properties massm∗, positionX∗, fluctuating velocityu∗, mass fractionsY∗, and enthalpy
h∗. The computational domain is overlaid by a uniform or non-uniform spatial grid for the
purpose of estimating the particle fields from the particle properties and interpolating the
FV and particle fields onto the particles as needed in the solution of the particle equations.
The particle fields are required to close the FV and particle equations as well as to represent
the numerical results. In the present study, the particle fields are estimated from the particle
properties by a non-parametric kernel estimation method based on linear basis functions.
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This is a cloud-in-cell (CIC) method [31] in which the particle fields on each grid node
are approximated as weighted ensemble of the particles in the neighboring cells of the
node. The details of the method can be found in [32]. The mean quantities at the particle
positions are interpolated from the nodal values of the corresponding FV or particle fields
using linear splines. Note that the spatial derivatives appearing in the particle equations
are first evaluated at the nodes using second order central differences and then interpolated
on the particle locations. It is emphasized that the FV mean field derivatives, for example,
∂Ũ i /∂xj , are evaluated consistently with the way the same derivatives are treated in the FV
code. The kernel estimation, evaluation of the spatial derivatives, and interpolation schemes
are all second order accurate yielding second order accuracy in space. In this work, the same
grid is used both in the FV and particle methods but this is not required in general.

The system of particle evolution equations is integrated forward in time using a multistep,
second order scheme. Each particle moves at its own velocity

d X∗i
dt
= Ũ ∗i + u∗i , (43)

and definingQP(x, t) andQFV(x, t) as the particle and FV fields, respectively, all the other
particle equations (Eqs. (12), (14), (17), and (19)) can be written in vector form as

dφ∗i (t)
dt

= Sφi (X
∗(t), φ∗(t),QP(X∗[t ], t),QFV(X∗[t ], t)), (44)

whereφ∗i is the vector of the dependent variables andSφi is the vector representing the
source terms on the right hand-side of the particle equations. Note that the mean density
and Reynolds stresses are the only particle fields used in the particle equations since the
mean velocity and pressure are provided by the FV method.

In advancing the particle properties from time leveln(tn= n1t) to leveln+ 1, the solu-
tions at timetn+1/2= 1

2(tn + tn+1) are first predicted using the explicit Euler method

X∗n+1/2
i = X∗ni +

1t

2

(
Ũ ∗ni + u∗ni

)
, (45)

φ
∗n+1/2
i = φ∗ni +

1t

2
S∗nφi
, (46)

whereS∗nφi
iswritten forS∗nφi

=Sφi (X
∗n, φ∗n,Q∗nP ,Q

∗n
FV). In this intermediatestep,Q∗n+1/2

P and
Q∗n+1/2

FV are also evaluated by interpolating the corresponding FV and particle fields on the
predicted particle positions.

In the next step, all the particle equations except for the convection are integrated to yield
the new particle properties using the midpoint rule

φ∗n+1
i = φ∗ni +1t S∗n+1/2

φi
, (47)

and the new particle position is subsequently calculated as

X∗n+1
i = X∗ni +

1t

2

(
u∗ni + u∗n+1

i

)+1tŨ ∗n+1/2
i ,

= X∗n+1/2
i + 1t

2

(
2Ũ ∗n+1/2

i − Ũ ∗ni

)+ 1t

2
u∗n+1

i , (48)
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where Eq. (45) has been used. Notice that convection due to the mean and the fluctuating
velocities are evaluated by the midpoint and the trapezoidal methods, respectively.

Finally the particle fields are evaluated using the kernel estimation method based on the
particle properties at the new time level and then the mean quantities are interpolated on
the new particle locations to obtainQ∗n+1

P andQ∗n+1
FV . The overall scheme consists of a

combination of midpoint and trapezoidal methods yielding second order accuracy in time.

4. RESULTS AND DISCUSSION

4.1. Test Problem

Numerical properties of the hybrid method have been studied through 1D reacting
stochastic ideal flows of a premixed methane–air mixture in a constant-area channel, as
sketched in Fig. 2. The stoichiometric gas mixture enters the channel at high temperature
and combustion occurs by auto-ignition.

As far as the thermochemistry is concerned, variations in pressure are negligible compared
to the pressure itself. Hence the enthalpyh is conserved, and the mass fractionsY depend
solely on residence timetr (see Eqs. (14) and (15)). Thus all the thermodynamic variables
can be pre-calculated and tabulated as function of the residence time.

The methane–air combustion mechanism employed here consists of 16 species and 41 re-
actions [28]. The species conservation equations are solved separately using the CHEMKIN
library [29] and a look-up table is formed for the quantitiesκ, the rate of change in the sen-
sible internal energẏεs, the sensible internal energyεs, and the densityρ as functions of the
residence timetr . The first two quantities,κ andε̇s, are then interpolated on the particles as
needed in the particle equations whileεs andρ are used for comparison with those computed
by the particle and FV methods.

The time steps taken in the FV and particle methods are specified through CFL numbers.
The CFL number in the FV method is defined in the usual way as

(CFL)FV = max
i

∣∣∣∣λi1tFV

1x

∣∣∣∣, (49)

whereλi ,1tFV, and1x are the characteristic wave speeds corresponding to the precondi-
tioned system of the field equations, the time step taken in the FV method and the charac-
teristic mesh interval, respectively. In a similar way, the particle CFL number is defined as

(CFL)P = |Ũ |max1tP

1x
, (50)

FIG. 2. Sketch of 1D reacting stochastic ideal flow.
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whereŨmax and1tP are the maximum mean velocity in magnitude and the time step used
in the time-integration scheme for the particle equations.

In all the results presented here, the boundary conditions are specified as follows. At the in-
let boundary, the mean velocity, density, and temperature are set equal toŨ in= 10.40 m/s,
ρ̄ in= 0.2448 kg/m3, and T̃ in= 1500◦K and the fluctuating velocity pdf is Gaussian with
mean〈u〉in= 0 and variance〈u2〉in= 1.0 m2/s2. Thus the rms velocity fluctuation is about
9.6% of the mean velocity at the inlet. At the exit boundary, the pressure is fixed at
Pe= 101,325 Pa. Note that the specified density ¯ρ in corresponds to the density of the stoi-
chiometric methane–air mixture at temperatureT̃ in and pressurePe. The length of the chan-
nel is chosen to beL = 0.04 m. At the beginning of the simulation, the particles are ran-
domly distributed in physical space and the particle properties are initialized to yield the
particle fields equal to the inlet boundary conditions. The particle masses,m∗, are initialized
in such a way that the total mass of the particles in each cell is equivalent to the mass of the
fluid in the cell occupied. The mean fields in the FV method are initially set equal to the
non-reacting uniform flow corresponding to the boundary conditions.

Figures 3 and 4 show stationary distributions of the mean density and the mean sensi-
ble internal energy, respectively. For the simulation, the computational domain is divided
into Nx = 128 equal cells and initiallyNpc= 40 particles are randomly distributed in each
cell. The CFL numbers in the FV and particle methods are fixed at (CFL)FV= 8.0 and
(CFL)P = 0.3, respectively. After reaching a stationary solution, time-averaging is per-
formed overNTA= 64000 time steps taken in the particle code to get smooth solutions. The
details of the time-averaging method will be discussed later. Since the mean density and
sensible internal energy are represented as duplicate fields, the FV and particle solutions
should agree for consistency. As can be seen in these figures, the remarkable agreement
between the FV and particle fields confirms that the consistency conditions are well satis-
fied in the present hybrid method at the level of numerical solution. The small differences
observed between the FV and particle solutions are mainly due to lack of grid resolution
in the FV method. The fields ¯ρCh and(ε̃s)Ch plotted in the figures are obtained from the

FIG. 3. Stationary distribution of the mean density ¯ρ. Npc= 40, Nx = 128, NTA= 64000, (CFL)P = 0.3, and
(CFL)FV= 8.0.
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FIG. 4. Stationary distribution of the mean sensible internal energy ˜εs. Npc= 40, Nx = 128, NTA= 64000,
(CFL)P = 0.3, and (CFL)FV= 8.0.

chemistry model based on the mean residence time defined as

t̃r =
∫ x

0

dx

Ũ (x)
, (51)

whereŨ (x) is the mean velocity. Hence these fields are not expected to agree with the FV
and particle solutions.

For the same case, the scatter plot of the fluctuating velocity and the stationary distribution
of 〈u∗2 | x〉 are depicted in Figs. 5 and 6, respectively. These figures indicate that the variance
of the fluctuating velocity decreases considerably in the reaction zone mainly due to large

FIG. 5. Scatter plot of the fluctuating velocityu. Npc= 40, Nx = 128, NTA= 64000, (CFL)P = 0.3, and
(CFL)FV= 8.0.
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FIG. 6. Stationary distribution of〈u∗2 | x〉. Npc= 40, Nx = 128, NTA= 64000, (CFL)P = 0.3, and (CFL)FV=
8.0.

positive mean velocity gradient present in this region. In the particle equations (cf. Eq. (17)),
this effect is represented by the term

du∗j
dt
= −u∗i

(
∂Ũ j

∂xi

)∗
+ · · ·. (52)

The apparent preponderance of particles near a sharp lower bound inu∗ space in Fig. 5 is
due to the fact that the particles with negative fluctuating velocity experience the positive
mean velocity gradient longer than those with the positive fluctuating velocity. Therefore,
the magnitude of the negative fluctuating velocity is more reduced than that of the positive
fluctuating velocity.

It is found that the consistency condition expressed by Eq. (31) is satisfied sufficiently
well so that no correction is performed on the fluctuating velocity. For the particular case
shown in Fig. 5, for instance, the magnitude of the mean fluctuating velocity normalized
by its rms value,〈u∗ | x〉/u′, remains smaller than 10−3 everywhere.

4.2. Numerical Errors

The purpose of this subsection is to identify and to quantify the various numerical errors
that arise in the hybrid method due to finite values of the number of particles per cellNpc,
the time step taken in the time-integration scheme for the particle equations1tP, and the
characteristic cell size1x. Note that since a steady-state is reached, the time step taken in
the FV method has no effect on the final solution. Therefore, the only time-stepping error
comes from the finite time step taken in the particle method.

In stochastic methods, convergence of numerical algorithms can be interpreted in either
a strong or a weak sense [33]. Weak convergence requires convergence of mean quantities
obtained by the numerical method to the actual means rather than the convergence of the
particle properties as needed for strong convergence. Since mean quantities are of essential
interest rather than individual sample paths, it is appropriate to seek weak convergence in
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this hybrid method. When estimating a mean quantity〈Q〉 at a fixed position and time in a
numerical simulation withNpc particles per cell, time step taken in the particle algorithm
1tp, and characteristic cell size1x, the numerical error in the estimated mean denoted by
{Q}Npc,1x,1tp is a random variable and can be decomposed as

εQ ≡ {Q}Npc,1x,1tp − 〈Q〉 = 6Q + DQ = 6Q + BQ + HQ + TQ, (53)

where6Q andDQ are the statistical and the deterministic errors, respectively. The deter-
ministic errors are further broken into the biasBQ, the spatial errorHQ, and the temporal
errorTQ. The statistical error arises from the random inlet boundary conditions in the par-
ticle method. The bias is the deterministic error caused by the statistical fluctuations in the
particle fields used in the particle evolution equations [30]. The spatial error results from
the spatial discretization of the field equations in the FV method, as well as, from the kernel
estimation and interpolation in the particle method. As mentioned earlier, the temporal error
is solely due to finite time step used in the time-integration scheme for the particle equations.
These four types of errors are studied and quantified individually. Note that all the errors
are normalized by the reference values for the corresponding particle and FV fields.

4.2.1. Statistical error. The statistical error in the estimated particle field{Q}Npc,1x,1tp

is given by

6Q = {Q}Npc,1x,1tp −
〈{Q}Npc,1x,1tp

〉
(54)

and it is measured by its standard error defined as

SQ =
[
Npcvar

({Q}Npc,1x,1tp

)]1/2
. (55)

The rms statistical errorσQ is thereforeN−1/2
pc SQ. As Npc approaches infinity,SQ becomes

independent ofNpc so that the rms statistical error scales asN−1/2
pc .

Table II shows the dependence of the standard error onNpc for the particle fields ¯ρP,

(ε̃s)P, ũ, and〈u∗2 | x〉. In evaluating the standard error, the variance of each quantity is
estimated along the length of the channel from 4000 samples and averaged over all the grid
points in the domain. Instead of different independent trials, the samples are obtained from
the solutions at consecutive time steps during the stationary state. The parameterNpc is
varied from 20 to 640. It is observed that the statistical error is significantly larger inũ and
〈u∗2 | x〉 than in ρ̄P and(ε̃s)P but the standard error remains approximately constant for
each of the quantities showing the expected scaling.

TABLE II

The Standard Error versus Number of Particles per Cell

Npc Sρ̄P S(ε̃s)P Sū S〈u∗2|x〉

20 2.16× 10−2 4.91× 10−2 5.88× 10−1 4.75× 10−1

40 2.27× 10−2 5.20× 10−2 5.86× 10−2 4.69× 10−1

80 2.14× 10−2 4.94× 10−2 5.66× 10−2 4.49× 10−1

160 2.13× 10−2 4.93× 10−2 5.57× 10−2 4.49× 10−1

320 2.11× 10−2 4.90× 10−2 5.62× 10−2 4.38× 10−1

640 2.09× 10−2 4.89× 10−2 5.50× 10−2 4.27× 10−1
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TABLE III

The rms Statistical Error Times N1/2
TA versusNTA

NTA N1/2
TA σρ̄P N1/2

TA σū N1/2
TA σ〈u∗2|x〉

32 2.22× 10−2 4.88× 10−1 9.62× 10−1

128 1.79× 10−2 6.29× 10−1 9.91× 10−1

512 1.44× 10−2 5.74× 10−1 8.36× 10−1

2048 1.76× 10−2 6.96× 10−1 8.09× 10−1

8192 2.12× 10−2 4.79× 10−1 9.21× 10−1

32768 2.39× 10−2 6.57× 10−1 10.00× 10−1

Due to the slow convergence of the statistical error withNpc, the required number of
particles increases dramatically as the desired error level is decreased and quickly becomes
computationally prohibitive. For example, while it requires only about 100 particles per
cell to achieve an overall rms statistical error level of 5%,Npc must be increased to 2500
to reduce the error to level of 1%. However, instead of increasing the number of particles,
the statistical error can be reduced through a time-averaging procedure. IfNTA time steps
are taken in the particle code during an outer loop after reaching a stationary solution, the
time-averaged mean for{Q}Npc,1x,1tp is defined as

〈{Q}Npc,1x,1tp

〉
NTA
≡ 1

NTA

NTA∑
n=1

{Q}(n)Npc,1x,1tp
. (56)

Thus, for largeNTA, the rms statistical error in the time-averaged field scales as (NpcNTA)
−1/2.

Table III presents the rms statistical errorσQ times N1/2
TA againstNTA for the particle

fields ρ̄P, ũ, and〈u∗2 | x〉 over the rangeNTA between 32 and 32,768. As can be seen in
the table,N1/2

TA σQ remains approximately constant over this range indicating the expected
scaling of the rms statistical error withNTA. In the table,σQ is estimated from 100 sta-
tistically independent simulations and averaged over the entire computational domain. All
the calculations are performed for the fixed parametersNpc= 10, Nx = 128, (CFL)P = 0.3,
and (CFL)FV= 8.0.

4.2.2. Bias. The bias is the deterministic error caused byNpc being finite. As re-
marked earlier, the bias is one of the dominant errors in the self-contained particle method
[12, 13]. Using the error decomposition in Eq. (53), the bias in the estimated particle field
{Q}Npc,1x,1tp can be written

BQ =
〈{Q}Npc,1x,1tp

〉− {Q}∞,1x,1tp, (57)

where{Q}∞,1x,1tp = limNpc→∞{Q}Npc,1x,1tp . The main source of the bias is the statistical
fluctuations in the particle fields used in the particle evolution equations. Both theoretical
analysis and numerical experiments [30, 13] have shown that the bias scales asN−1

pc .
In Fig. 7, the bias is plotted againstN−1

pc for the particle fields〈u∗2 | x〉 and ρ̄ p at the
locationx/L = 0.389 over the rangeNpc from 20 to 640. The approximate linear relationship
between the bias andN−1

pc confirms the expected inverse scaling. The bias is isolated as
follows. The statistical error is kept small by fixing the productNpcNTA= 5.2× 106 for
which the overall rms statistical error is expected to be of order 2.2× 10−4. The bias-free
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FIG. 7. Bias againstN−1
pc at x/L = 0.389. The number of particles per cellNpc ranges from 20 to 640. The

lines show linear-least-squares fits.

variable{Q}∞,1x,1tp is estimated by linear extrapolation inN−1
pc to N−1

pc = 0 using the values
at Npc= 640 andNpc= 1280. Then the bias is calculated from Eq. (57). It is found that the
maximum bias occurs in〈u∗2 | x〉. To give an idea about the distribution of the bias in the
entire computational domain, it is plotted in Fig. 8 for〈u∗2 | x〉 along the channel. As can
be seen in this figure, the bias is small, i.e., its maximum value is less than 1% even for
Npc= 20. This is an important result showing that the bias is not a dominant error in the
hybrid method. Since the statistical error can be reduced effectively by time-averaging and
the bias is small, it is possible to use many fewer particles in the hybrid method than in the
self-contained particle algorithm to achieve a given level of accuracy.

FIG. 8. Variation of bias in〈u∗2 | x〉 along the channel for various values ofNpc.
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FIG. 9. Spatial error against1x/L. The normalized cell size1x/L varies between 1/16 and 1/512. The
slopes are obtained from linear-least-squares fits to each set of data.

4.2.3. Spatial error. The spatial error results from the spatial discretization in the FV
method and also from the kernel estimation and interpolation in the particle algorithm. The
spatial error in{Q}Npc,1x,1tp is

HQ = {Q}∞,1x,1tp − {Q}∞,0,1tp, (58)

where{Q}∞,0,1tp = limNpc→∞,1x→0{Q}Npc,1x,1tp . The spatial discretization [23] and the
kernel estimation and interpolation schemes [32] are all second order accurate, so the spatial
error is expected to scale as1x2. This is verified in Fig. 9 for the selected mean and particle
fields Ũ , ρ̄FV, 〈u∗2 | x〉, and(ε̃s)P over the range1x/L from 1/16 to 1/512 whereL is
the length of the channel. In all the simulations, the parameterNTA is fixed at 104 andNpc

is varied to keep the total number of particles constant atNpcNx = 1.28× 105 which is
equivalent toNpc= 1000 forNx = 128. Therefore, the rms statistical error and the bias are
estimated to be of order 1.6× 10−4 and 10−4, respectively. Then{Q}∞,0,1tp is estimated
using Richardson extrapolation to the limit1x→ 0. Thus the spatial error is obtained from
Eq. (58) and averaged over the computational domain.

4.2.4. Temporal error. In this hybrid method, the sole source of the temporal error is
the finite time steps taken in the time-integration scheme in the particle method. Since
our interests lie in the steady-state solutions, the FV method does not contribute to the
time-stepping error if it is fully converged. The temporal errorTQ in {Q}Npc,1x,1tp is

TQ = {Q}∞,0,1tp − {Q}∞,0,0, (59)

where{Q}∞,0,0 = limNpc→∞,1x→0,1tp→0{Q}Npc,1x,1tp .
Figure 10 illustrates a log–log plot of the temporal error|TQ| against the time step

taken in particle method for the particle fields〈u∗2 | x〉, (ε̃s)P, andρ̄P over the range of the
particle CFL number (CFL)P between 0.2 and 2.0. Note that the time step1tp is normal-
ized by the average residence timeTr defined as the average time for a particle to travel
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FIG. 10. Temporal error against1tP/Tr . The particle CFL number(CFL)P varies between 0.2 and 2.0. The
slopes are obtained from linear-least-squares fits to each set of data.

from the inlet to the exit boundary. All the calculations are performed for the parameters
Nx = 256, Npc= 500, andNTA= 104. Therefore, the bias and the rms statistical error are
estimated to be of order 10−4 and 1.6× 10−4, respectively. The spatial error is predicted
to be of order 2.4× 10−3 which is larger than the smallest time-stepping error in the figure
but the dominant effect of1tp is assumed to be through the temporal errorTQ. Richardson
extrapolation is used to predict{Q}∞,0,0 in the limit as1tP→ 0. The slopes in the figure
are obtained from linear-least-square fits and are found to be slightly larger but very close
to the expected value 2.0 showing the second order accuracy of the time-integration scheme
used to integrate the particle equations.

4.3. Convergence

The numerical errors have been discussed and quantified in the previous subsection, the
convergence of the hybrid method will now be examined in detail. In a FV method, con-
vergence is usually measured by residuals and a FV solution is considered to be converged
when the magnitude of residuals is smaller than a specified tolerance value. In the hybrid
method, however, a number of outer iterations are usually required to solve the flow field
and the source terms appearing on the right hand side of the field equations are updated
at the end of each outer iteration by passing the required particle fields from the particle
code to the FV code. Even when a statistically stationary solution has been reached, the
noisy particle fields feed back significant statistical fluctuations into the source terms and
thus cause a jump in the convergence history of the FV solutions at the beginning of the
inner FV iterations as shown in Fig. 11. The data in the figure are taken from a numerical
simulation of 50 outer iterations with the parametersNpc= 40, Nx = 128, (CFL)P = 0.3,
and (CFL)FV= 8.0. Time-averaging is turned off throughout the simulation. An inner par-
ticle iteration of 20 time steps is performed between two adjacent FV cycles but it has not
been displayed in the figure. Here the residual is defined as the mean of absolute residuals
of the continuity, momentum, and energy equations averaged over the entire computational
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FIG. 11. Convergence history of the FV solutions over 50 outer iterations.Npc= 40, Nx = 128, (CFL)P = 0.3,
and (CFL)= 8.0.

domain. As can be seen in this figure, the residual is quickly decreased to a small value
in each FV cycle but the global convergence is not clearly shown even in the statistically
stationary state. Similar results have also been observed in previous studies; see, e.g., Chang
[15]. The residuals obtained at the beginning of the FV cycles are a good measure for the
global convergence of the FV solutions and will hereafter be referred to as “initial residuals”
or simply “residuals.”

Since the jump in the convergence history is attributed to the statistical error in the source
terms, the initial residuals may be expected to converge as(NpcNTA)

−1/2. This is verified
in Figs. 12 and 13 which show log–log plots of the initial residuals versus the number
of particles per cellNpc and the time-averaging parameterNTA, respectively. The slopes

FIG. 12. Initial residual of FV solutions againstNpc without time-averaging.Npc ranges from 20 to 2400.
The slope is calculated from linear-least-squares fit.
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FIG. 13. Initial residual of FV solutions againstNTA. NTA ranges from 8 to 262144 andβ = 2.0. The slope
is calculated from linear-least-squares fit.

of linear-least-square fits to each set of data are slightly smaller but very close to−0.5
that clearly illustrates the expected scaling. The data plotted in Fig. 12 are obtained from
the statistically stationary solutions forNpc ranging between 20 and 2400 and the other
parameters are fixed atNx = 128, (CFL)P = 0.3, and (CFL)FV= 8.0. Note that no time-
averaging is applied in this case. In Fig. 13 on the other hand, all the parameters are kept
the same as in Fig. 12 but the number of particles per cell is fixed atNpc= 40 and the
time-averaging is performed for various values ofNTA ranging between 8 and 262,144.

A log–log plot of the initial residuals against work units (WUs) is also displayed in Fig. 14
for the same case. (A work unit is defined here as the total computational labor required in
advancing the particle code for a single time step. Note that the computational work done in

FIG. 14. Convergence history of initial residual of FV solutions. Time-averaging is started after 200 outer
iterations withβ = 2.0. The slope is calculated from linear-least-squares fit.
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the FV code is neglected here since it accounts for less than 1% of the overall computational
work in terms of CPU times.) This figure clearly shows the effect of the time-averaging on the
global convergence of the FV solutions: the initial residuals remain approximately constant
in the region where a statistically stationary solution is reached but no time-averaging is
carried out, i.e., between WUs= 600 and WUs= 4000, and start decreasing immediately
when the time-averaging is applied. It is assumed for this particular case that the stationary
statek> ko is reached when all the initial particles leave the computational domain. The
slope of the linear-least-square fit is found to be about−0.66 but it is expected to approach
asymptotically to−0.5 as WU→∞.

It is difficult to measure the global convergence of the particle method since there are no
corresponding residual as in the FV method. However, changes in the particle fields can be
monitored for this purpose. The change in the particle field〈Q〉P is defined as

1〈Q〉(k)P ≡
∣∣〈Q〉(k+1)

P − 〈Q〉(k)P

∣∣, (60)

where〈Q〉(k)P is the time-averaged value of the particle field〈Q〉P evaluated at the end of
the kth outer loop. Log–log plots of1ρ̄P and1〈u∗2 | x〉 versus work units are shown in
Figs. 15 and 16, respectively. As can be seen from comparison of these figures with Fig. 14,
the particle fields converge in a similar way to the FV solutions. In other words, if the time-
averaging is turned off, the changes in the particle fields remain approximately constant in
the region of statistically stationary solution but they immediately start decreasing when
the time-averaging is turned on.

The time-averaging parameterβ = 2.0 has been used in all the results presented so far
without justification. To determine the optimal value ofβ, log–log plots of the initial residual
versus work units are displayed in Fig. 17 forβ = 1.5, 2.0, 4.0, and 8.0. As can be seen in
this figure, the optimal value ofβ that provides the best reduction in the residuals for the
given computational work is about 2.0.

FIG. 15. Convergence history of particle density field. Time-averaging is started after 200 outer iterations
with β = 2.0. The slope is calculated from linear-least-squares fit.
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FIG. 16. Convergence history of particle field〈u∗2 | x〉. Time-averaging is started after 200 outer iterations
with β = 2.0. The slope is calculated from linear-least-squares fit.

5. CONCLUSIONS

A consistent, loosely coupled, hybrid FV/particle method has been developed for the PDF
equations of turbulent reactive flows. The method is designed to combine the best features
and to avoid the deficiencies of the FV and particle methods. Consistency is satisfied at the
level of the equations solved by the FV and particle methods. Therefore the consistency
conditions are easily fulfilled. A loose coupling strategy is adopted in the hybrid method
that aims at statistically stationary solutions, i.e., time-accurate solutions are excluded.

FIG. 17. Convergence histories of initial residual of FV solutions for various values ofβ. Time-averaging is
started after 200 outer iterations.
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The method has been implemented and tested in the simple setting of 1D reactive stochas-
tic ideal flow to facilitate comprehensive numerical experiment. However, the extension of
the method to higher dimensions is straightforward.

A combination of midpoint and trapezoidal rules has been employed to integrate the
particle evolution equations in time and a diagonalized implicit FV algorithm has been
adopted for solution of the field equations. A preconditioning method is incorporated into
the FV scheme to remove the eigenvalue stiffness caused by large differences between
characteristic wave speeds at low Mach numbers. A simple algorithm is also developed to
eliminate the chemical stiffness induced by large source terms in the field equations. Both
the FV and particle methods are found to be very robust.

The accuracy of the hybrid method has been quantified through a detailed study of nu-
merical errors. Four types of error have been identified. Statistical error is found to scale as
(NpcNTA)

−1/2 as expected. The spatial and temporal errors scale as1x2 and1t2
P, respec-

tively. Bias is shown not to be a dominant error in the hybrid method and scales asN−1
pc .

A comprehensive study has been performed to demonstrate convergence of the hybrid
method. The global convergence of the method has been verified. The initial residuals of the
FV solutions and the changes in the particle fields evaluated at the end of successive outer
iterations are found to be good measures for global convergence of mean and particle fields,
respectively. The hybrid method is shown to converge at the same rate as the statistical error.

The optimal strategy for the time-averaging has also been investigated. The time-averaging
is started when a statistically stationary solution is reached and doubling the total number
of time steps to be taken in the particle algorithm during each successive outer cycle is
demonstrated to give the best asymptotic convergence rate.

APPENDIX

The molecular weight of speciesα is Wα, and its gas constant is

Rα ≡ R
Wα

, (61)

whereR is the universal gas constant.
All energy variables are defined from the specific enthalpy of formationho

α at the reference
temperatureTo (To= 298.15 K), and from the constant-pressure specific heatcpα (T) for
each species. Note that thermodynamic databases are available giving the values ofho

α and
of cpα (T) as polynomials ofT . The specific enthalpy is

hα(T) ≡ ho
α +

∫ T

To

cpα (T
′) dT′, (62)

and the specific internal energy is

εα(T) ≡ hα(T)− RαT = εo
α +

∫ T

To

cvα (T
′) dT′, (63)

where

εo
α ≡ ho

α − RαTo, (64)

cvα (T) ≡ cpα (T)− Rα, (65)
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and the specific sensible internal energy is defined by

εsα (T) ≡ εα(T)− εso
α , (66)

where

εso
α ≡ εo

α − co
vα

To, (67)

with co
vα
≡ cvα (To).

For a mixture, the specific enthalpy is given by

h(Y, T) =
∑
α

Yαhα(T). (68)

In an obvious notation, similar equations define:εs(Y, T), cp(Y, T), cv(Y, T), andR(Y, T).
The conservation equations can be obtained in a number of ways. One is to differentiate

Eq. (8), i.e.,

∂

∂t
(ρ̄φ̃) =

〈
m∗

dφ∗

dt
δ(X∗ − x)−m∗φ∗

d X∗i
dt

∂

∂xi
δ(X∗ − x)

〉
= ρ̄

〈
dφ∗

dt

∣∣∣∣ x
〉
− ∂

∂xi
[ρ̄〈U ∗i φ∗ | x〉]. (69)

Forφ∗ = 1, this yields the particle mean mass conservation equation

∂ρ̄

∂t
+ ∂

∂xi
(ρ̄Ũ i ) = 0. (70)

Forφ∗ =U ∗j , Eq. (69) and the mean of Eq. (13) yield the mean momentum equation

∂

∂t
(ρ̄Ũ j )+ ∂

∂xi
[ρ̄〈U ∗i U ∗j | x〉] = −

∂p

∂xj
. (71)

Using the identityU ∗j = Ũ ∗j + u∗j , the mean momentum equation can be rewritten as

∂

∂t
(ρ̄Ũ j )+ ∂

∂xi
[ρ̄Ũi Ũ j + pδi j ] = − ∂

∂xi
[ρ̄〈u∗i u∗j | x〉]. (72)

The mean energy conservation equation is obtained by substitutingφ∗ = ε∗s into Eq. (69)

∂

∂t
(ρ̄ε̃s) = ρ̄

〈
dε∗s
dt

∣∣∣∣ x
〉
− ∂

∂xi
[ρ̄〈U ∗i ε∗s | x〉]. (73)

Substitutingh∗ = ε∗s + p∗v∗ +∑α ε
so
α Y∗α into Eq. (15) and then taking the mean results in〈

dε∗s
dt

∣∣∣∣ x
〉
= −p

〈
dv∗

dt

∣∣∣∣ x
〉
−
∑
α

εso
α

〈
dY∗α
dt

〉
, (74)

and the time derivative of the consistency condition〈m∗v∗δ(X∗[t ] − x)〉=1 yields〈
m∗

dv∗

dt
δ(X∗[t ] − x)−m∗v∗

d X∗i
dt

∂

∂xi
δ(X∗[t ] − x)

〉
= ρ̄

〈
dv

dt

∣∣∣∣ x〉− ∂Ū i

∂xi
= 0. (75)
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Combining Eqs. (73), (74), and (75) gives

∂

∂t
(ρ̄ε̃s)+ ∂

∂xi
[ρ̄〈U ∗i ε∗s | x〉] = −p

∂Ū i

∂xi
+ ˜̇es, (76)

where˜̇es is given by Eq. (26).
From the above, we deduce the equation for

ẽs ≡ ρ̄ε̃s + 1

2
ρ̄Ũ i Ũ i (77)

to be

∂ẽs

∂t
+ ∂

∂xi
[Ũ i (ẽs + p)]

= ˜̇e+ p
∂

∂xi
(Ũi − Ū i )− ∂

∂xi
(ρ̄〈u∗i ε∗s | x〉 − Ũ j

∂

∂xi
(ρ̄〈u∗i u∗j | x〉). (78)

The evolution equation for the fluctuating particle velocity is obtained from its definition,
i.e.,u∗ =U∗ − Ũ∗ and from Eqs. (13), (21), and (72):

du∗j
dt
= − 1

ρ∗

(
∂p

∂xj

)∗
− ∂Ũ j

∂t
−U ∗i

(
∂Ũ j

∂xi

)∗
= −u∗i

(
∂Ũ j

∂xi

)∗
+
(

1

ρ̄∗
− 1

ρ∗

)(
∂p

∂xj

)∗
+ 1

ρ̄∗

(
∂

∂xi
[ρ̄〈u∗i u∗j | x〉]

)∗
. (79)
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