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The paper describes a new hybrid finite-volume (FV)/particle method developed
for the solution of the PDF equations for statistically stationary turbulent reactive
flows. In this approach, the conservation equations for mean mass, momentum, and
energy conservation are solved by a FV method while a particle algorithm is employed
to solve the fluctuating velocity-turbulence frequency-compositions joint PDF trans-
port equation. The mean velocity and pressure are supplied to the particle code by the
FV code whichinturn obtains all the Reynolds stresses, the scalar fluxes, and the reac-
tion terms needed in the FV code. An important feature of the method is the complete
consistency between the set of equations solved by the FV and particle methods. The
algorithmic and numerical issues arising in the development of the hybrid method
are studied in the simple setting of the stochastic ideal flow equations. Numerical
results are obtained for 1D reactive stochastic ideal flow to demonstrate numerical
properties of the method. The total numerical error is identified as statistical error,
bias, spatial truncation error, and temporal truncation error. In contrast to the self-
contained particle method, the bias is found to be negligibly small. It is shown that all
the numerical errors converge at the expected rates. Finally, the global convergence
of the hybrid method is demonstrated and the optimal strategy for time-averaging
that gives the best global convergence rate is investigate.oss Academic Press

Key Wordshybrid finite-volume/particle method; numerical convergence; reactive
stochastic ideal flows.

1. INTRODUCTION

The probability density function (PDF) method has proven to be a useful computatio
tool for analysis of complex turbulent reacting flows [1]. Compared to traditional momer
closure methods, the PDF method offers the distinct advantages of being able to 1
convection and finite-rate nonlinear chemistry exactly [2, 3]. In addition to this, body forc
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and the mean pressure gradient also appear in closed form, but the fluctuating pre:
gradient and molecular transport terms need to be modeled [2].

In PDF methods, a modeled evolution equation is solved for the one-point joint PDF
the selected flow variables. The PDF transport equation is derived from the Navier—Stc
equations and the unclosed terms are modeled by coupled model stochastic differe
equations (SDEs) [3]. Due to the high dimensionality of the PDF, conventional numeri
techniques such as finite-difference and finite-element methods are computationally
hibitive. However, efficient solutions to the modeled joint PDF transport equation are me
feasible by use of a particle-mesh Monte Carlo method in which the PDF is represente
a large set of stochastic particles [2]. We note that the PDF equations can be alternati
solved by a purely particle Monte Carlo method through use of smoothed particle hydro
namics (SPH) where no field equations are solved and neither is a mesh needed to e
statistical means [5]. The PDF equations can be modeled and solved by either an Eule
or a Lagrangian method. In the Eulerian method [4] the particles are located at grid nc
in physical space while in the Lagrangian method the particles are continuously distribu
The Lagrangian viewpoint has been central to the PDF methods for over a decade, ¢
it makes modeling simpler and offers an intuitively obvious solution algorithm [1, 3]. Tt
particle properties evolve according to model stochastic differential equations (SDESs),
there are usually one or more mean fields that are determined separately by solutic
partial differential equations (PDESs) on a mesh. Various mean fields can also be estim
from the particles and we refer to these as “particle fields” to distinguish them from t
“mean fields” obtained from PDEs. The mean and particle fields and their use in the
ticle equations make an important distinction between different PDF solution algorithr
Table | summarizes attributes of different Lagrangian solution algorithms some of wh
are discussed further in the following section.

1.1. Review of PDF Algorithms

In some early applications of PDF methods, a finite volume (FV) method is coupled wit
particle method based on the joint PDF of compositions (or of velocity and compositions
provide additional turbulence closure equations. Such a hybrid algorithm has been prop
by Anandet al. [21] and Haworth and El Tahry [22] in which the modeled transpor
equation for the joint PDF of velocity and composition is solved by the Monte Carlo methc
while a SIMPLE [6] based FV algorithm is employed to solve the Reynolds-averaged fl
equations. In this approach, the FV code provides the Monte Carlo code with the m
velocity, pressure, and rate of turbulence dissipation, and the Monte Carlo code in |
supplies the Reynolds stresses and mean density to the FV code. The mean velocity ap
to be a duplicate field, i.e., it is represented both as a particle field and as a mean field

A similar hybrid method has also been developed by Correa and Pope [14] and im|
mented in the codBDF2DS This method makes minimal use of particle properties, i.e
the mean velocity, pressure, turbulence kinetic energy, and rate of dissipation neede
the particle equations are supplied by the FV method which in turn gets the mean par
density field from the Monte Carlo code. The duplicate fields include the mean veloc
and Reynolds stresses. The same algorithm has also been used by Chang [15], Tsai ar
[16], Wouterset al.[18], and Nauwet al.[19].

As mentioned above, some fields are represented as duplicate fields, which raises ¢
tions of consistency. In these hybrid methods, the consistency conditions are not f
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TABLE |
Attributes of Different Lagrangian PDF Solution Algorithms @

Particle equations Mean field equations
Particle Mean Particle
fields fields fields used
used in used in Mean in mean
Particle particle particle field field Duplicate
Method properties equations equations  variables equations fields
Composition jpdf me, Y* Y.po U,ke U (p)ke o —
(Pope [2])
Composition jpdf m, Y*, z(Y*) \% O,p ke  0,(p.2 Zuz|x 7
(Jaberiet al.[20]) 0. K, €
Velocity-composition ~ m*, U, Y* ‘& Uke U (p)ke R U, (uu;)
jpdf, minimal use of (p)
particle properties
(PDF2DS[14])
Velocity-composition ~ m*, U*, Y* Y.k Ue.(p U(phe o (uui|x) 0
jpdf, maximal use of
particle properties
(Anandet al.[21]
Haworth and
El Tahry [22])
Velocity-frequency- — m*, U*, 0*, Y* 0,Y, p, &, , (p) P (p*U* | X) —
composition jpdf (urus | x)
(PDF2DVI[9])
Velocity-frequency- m, U e, 0,Y,3,(p), — — - -
composition jpdf Y*, p* (urus | x)
SPH (Welton and
Pope [5])
Velocity-frequency- me, u*, o*, Y. 0,6, 9, U.p O(phép (ulx.é pé
composition jpdf Y*, h* {urur | x) (uFer | x)
(present)

ak e, 2,7, (uFz* | x), w, and2 are the mean turbulent kinetic energy, the mean dissipation rate, an energy v
iable, the mean rate of change in the energy variableZi-edz/dt, the scalar fluxes, the instantaneous turbulent
frequency, and the conditional mean turbulent frequency, respectively. The definition of means, &ng. tHe
other variables are the same as defined in the paper.

satisfied even at the level of turbulence closures due to the inconsistency of the turbule
models employed in FV and PDF submodels. For example, the simplified Langevin ma
(SLM) is equivalent to the Rotta model at the level of second moments [17]. Thus, use
ak — e model in the FV code and of a SLM PDF model in the particle code cannot |
consistent. As shown by Woutegsal.[18], the level of consistency mainly depends on the
equivalence of the turbulence models used in FV and PDF methods.

In addition to the consistency problem, it has been found that the use of a noisy part
density field in the mean field equations causes a serious convergence problem tha
hinder and even prevent convergence ofthe FV method (see, e.g., Chang [15]). An altern
method developed by Jabetial.[20] is designed to overcome the difficulty caused by the
noise in the particle density field. In this method, in addition to other quantities, mean fi
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equations are solved for the mean density and mean energy variable. The mean press
then obtained from the mean equation of state. The resulting noise in the mean density
is substantially reduced compared to that of the particle density field.

With the relatively recent development of a model for turbulence frequency (or time sca
the velocity-frequency-composition joint PDF method forms a complete turbulence mo
which requires no further information except for fluid properties and initial and bounde
conditions [7, 8]. Therefore, this model allows development of a consistent self-contair
particle method. Such a self-contained particle-mesh based Monte Carlo algorithm has!
developed and implemented in tRBF2DV code in which, except for mean pressure field,
the particle fields are used throughout in the particle equations [9]. WDiFE2DVsucces-
sfully solves the modeled velocity-frequency-compositions joint PDF transport equati
two important shortcomings have been identified [10, 12]:

(i) a complicated algorithm is required for calculation of the mean pressure field, tt
needs damping and dissipation, and may not be very accurate on the grids typically
[11];

(i) the use of the particle mean velocity in the particle equations has been founc
lead to substantial deterministic error called bias [12].

Itis emphasized here that all the shortcomings listed above are related to experience
the versions of th DF2DV code which represent only a particular implementation of self
contained particle/mesh method. However, there has been reported no other implement
of a self-contained particle/mesh algorithm which has been extensively tested.

1.2. Present Method

These deficiencies in the self-contained particle method motivate the development
new hybrid algorithm which combines the best features of FV and particle methods to a\
the shortcomings just mentioned. In this approach, the conservation equations for n
mass, momentum, and energy, coupled with a mean equation of state are solved by .
method while a particle-mesh based Monte Carlo algorithm is employed to solve the m
eled transport equation of joint PDF for fluctuating velocity, turbulence frequency, enthal
and compositions. The FV and particle codes are linked as follows. The FV code provi
the particle code with the mean velocity and pressure while the particle code supplie:
the turbulence quantities and the chemical source terms needed in the FV code. Tt
fore, the bias error is substantially reduced by the use of the smooth mean velocity f
and the need for additional turbulence and chemistry models in the FV method is avoic
Furthermore, the mean pressure is easily computed from the mean equation of stat
this method, the mean density and mean sensible internal energy are duplicate fields.
emphasized that this hybrid algorithm is completely consistent at the level of turbuler
closure so that the consistency conditions are easily satisfied.

The purpose of this work is to address the algorithmic and numerical issues associ
with the present hybrid FV/particle method such as coupling, convergence, and statis
and deterministic errors which have not been examined extensively in any of the previ
studies on hybrid methods.

The approach taken here is to study all these issues in the simpler setting of reac
stochastic ideal flow. This is a non-physical system in which, from random initial conditior
flow properties evolve deterministically according to the ideal flow equations. Itis especic
valuable that for this class of flows there is an exact correspondence between particle
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field equations. In addition to this, even 1D stochastic ideal flows have the ingredients nee
to address the issues arising in the context of developing a hybrid FV/particle algorit
for tubulent reacting flows. Therefore, the analysis is done in the simple one-dimensic
setting that makes it possible to consider extreme cases such as very large numbe
particles per cell and time-averaging over long time periods.

1.3. Outline of the Paper

The paper starts with a brief description of the governing equations of reactive stocha
ideal flow: The thermochemistry is reviewed and the systems of equations solved by
particle and FV methods are presented. The mean fields used in the particle system
the particle fields used in the FV system are shown and the consistency conditions
identified. The numerical methods are discussed in Section 3. The FV and particle sche
are described in the context of the hybrid FV/particle algorithm. Numerical results are p
sented and discussed in Section 4. Some sample flow calculations are shown and a de
analysis of the numerical errors arising in the hybrid method is presented. A comprehen
convergence study is also presented in this section. The results clearly demonstrate cc
tency, stability, convergence, accuracy, and efficiency of the hybrid method. Conclusi
are drawn in Section 5. Finally, the derivation of the reactive stochastic ideal flow equati
is provided separately in the Appendix.

2. GOVERNING EQUATIONS

A number of numerical and algorithmic issues arising in the development of a hyb
FV/particle method for turbulent reactive flows can be studied in the simpler system
the stochastic ideal flow of a reactive gas mixture. The purpose of this section is briefly
review the thermochemistry involved and to describe the evolution equations to be sol
by the particle and FV methods. The derivation of the equations is supplied in the Appen

2.1. Thermochemistry

The thermochemical state of ahomogeneous mixture of ideal gases is characterized k
pressure, the temperatur€, and the mass fractions of thig speciey’ = {Y1, Yo, ..., Yn.}.
As described in the Appendix, for each species=(1, 2, ..., Ns), the following properties
are defined: the gas constaRt, the specific enthalph, (T), and the specific sensible
internal energys, (T). The corresponding mixture properties (iB(Y, T), h(Y, T), and
es(Y, T)) are defined by, for example,

h(Y. T) =D Yaho(T). @)

The ideal gas law is
p=pRT, )
wherep is the density. This can also be written as

p = pres, 3)
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wherex is defined by

RT
kY, T)=—. 4)
€s
Note that if R andc, are constant them is the constanR/c, = y — 1 wherey is the ratio
of specific heats. In general,can be expected to depend weaklyYoandT.
The net chemical reaction rate for speaieis S,, so that, for a homogeneous mixture,
the mass fractions evolve by

dy,
dt

=&, p. . (5)

2.2. Stochastic Ideal Flow

As an intermediate step between ideal and turbulent flows, we consider here a r
physical system, in which—from random initial and inflow boundary conditions—the flo
properties evolve deterministically according to the ideal flow equations. The govern
equations are described here in the context of the hybrid FV/particle method.

2.2.1. Particle system.The flow equations written in the convective form describe th
evolution of the properties of the fluid particles. The particle system is described here f
closed system, i.e., one in which there is no mass flow in or out. The results are the sam
an open system but the analysis is more complicated. The intrinsic properties of a ger
particle include masm*, positionX*(t), fluctuating velocityu*(t), mass fraction¥ *(t),
and enthalpyh*(t). It is emphasized that these properties are random and that there
no underlying random fields. There are, however, hon-random prepgxre) and mean
velocity U(x, t) fields. The thermochemical state of the particles is completely determin
by Y*(t), h*(t), and the interpolated pressupé(t). Note that, here and below, an asterisk
on a field variable (e.gp*) denotes the value of the field evaluated at the particle locatio
ie.,

p(t) = p(Xt]. ). (6)

The intrinsic propertiesnf*, X*, u*, Y*, andh*), the interpolated mean velocify* and
mean pressurp* are called the primary properties. These properties contain no redundar
no one of them can be deduced from the others. Nevertheless, various secondary pa
properties can be derived from the primary properties such as derisispecific volume
v*=1/p*, temperaturd *, and sensible internal energy.

Fromthe particle properties, various particle fields can be estimatedxpketed particle
mass density(x, t) is defined by

p(X, 1) =q(x, t) = (M*§(X*[t] — X)). (7
For a particle propertyg*, themass-weighted conditional expectatisrdefined by

d(X, 1) = (" (1) | X*(t) = X)
= (M*¢*(1)S(X*[t] — X))/p(X, 1). (8)
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Note that forg = 1, ¢ is unity. Thevolume-weighted conditional expectatisrdefined by
$(x, 1) = ($" OV ) | X*(t) = X)p(X, 1)
= (M*¢™ (V™ ()3 (X*[t] — x)). 9)

For ¢ =1, the requiremen$=1 leads to a consistency condition that is discussed i
Subsection 2.2.3.
The equation of state (Eq. (3)) for the particle properties is

p* = p*k*el. (20)
The velocity of the particle is
U*(t) = U* + u*(t), (11)

that is, the sum of the local mean and the particle’s fluctuation. The particles move, |
fluid particles, with their own velocity

4% U’ (12)
at oo
and the other particle properties evolve in the same way as fluid-particle properties in ic
flow (in which the viscosity, thermal conductivity, and molecular diffusivity are zero):

du’ 1/0p\”
J
- —(F 1
dt p*<dxj) ’ (13)
dy:
J —- g * * *
dh* 1 dp*
= — . 1
dt o* dt (15)

In the enthalpy equatiordp*/dt denotes the rate of change of pressure following th
particle.

Equations (10)—(15) fully describe the evolution of the particle properties and form
non-redundant system, i.e., none of them can be derived from the others. It is importar
note that the other particle equations described below as well as all the mean field equa
described in Subsection 2.2.2 are derived from these equations together with the auxi
consistency conditions. (See the Appendix for the derivations.)

The fluctuating velocity is defined as

ut =U; - U1, (16)

and it evolves by (cf. the Appendix)

dut a0\ * 1 1 9p " 1 s .
- (L R 100 e
dt Ui ( X ) + <p* p*> (aXJ> + PR (axi [,0<U| U] |X>]> ( )
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Deduced from Eq. (15), the evolution equations for the sensible internal esiergly* —
p*v* — >, €307} and the sensible enthaliy = € + p*v* are given by

def dv*

dts =—p* it + €k, (18)
dht dp* .,

dtS =" dF; + €2, (29)

wheree° is defined by Eq. (67) in the Appendix and
x dy:
ét = —za: g (20)

Note that the mean quantities appearing in the particle evolution equations are interpol
from the corresponding particle or mean fields on the particle position, for insiaiite=
p(X*[t], t). Itis emphasized here that, contrary to the PDF equations, the particle evolut
equations of the stochastic ideal flow are not stochastic.

2.2.2. Finite volume systemThe system of equations solved by the FV method i
directly derived from the particle evolution equations and the particle equation of state
that it is completely consistent with the particle system. For the reacting stochastic ic
flow, the conservation equations for the mean mass and momentum derived in the Appe
are

L4+~ 0 =0, 21
ot + % (oUi) (21)
J _~ 0 _~ ~
ﬁ(ﬂUj)—i-a—xi[pUin-i-pSij]:Rj, (22)
where
- -
Rj = —a—Xi[P(Ui uj | x)]. (23)

The energy variable used is the total sensible enérglefined as

~ . 1~
esZ,O(GS-I—ZUiUi), (24)
which evolves by
& 9 .~ 5 aJ;  9G -~
— 4+ —[U; = — — 4R, 25
ot +3Xi[U.(es+ 9] es+|oaxi ™ +UiR (25)
where
- _ dy*
- _ so/ ¥ o 26
eS p ea < dt X>’ ( )
Gi = p(uies | X), (27)

ljizlji—lji. (28)
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Finally the FV system is closed by the mean equation of state given by

o~ 1.~ -~
p=x<e5—§p iUi>, (29)
where
. (k"€ | Xx)
K = 7(65“0 . (30)

As can be seen from the field equations (Egs. (21), (22), and (25)), the terms on the
hand side are in the same form as the compressible Euler equations while, as far as th
method is concerned, the terms on the right-hand side do not contain time derivatives,
they are all supplied by the particle algorithm. Therefore, these equations may be consid
as the compressible Euler equations with added source terms.

2.2.3. Consistency conditionsThe mean density and the mean sensible internal er
ergy are represented as duplicate fields which, together with the requirements that n
fluctuating velocity be zero and the particle volume be equal to the geometric volume
cupied, raise the question of consistency. Since all the equations stem from a consis
non-redundant set of equations, namely the particle equations (Egs. (11)—(15)) and the
ticle equation of state (Eq. (10)), the present hybrid method is completely consistent at
equations level; i.e., the exact solutions of the equations yield identical duplicate fiel
However, the consistency conditions may not be fulfilled at the level of numerical solutic
depending on the accuracy of the numerical solution algorithms.

The conditions that need to be satisfied for consistency are

(u* | x) =0, (31)

(€5 | X) = (€9)rv, (32)
(©)p = (P)Fvs (33)
(Mro*s(X* — X)) = 1, (34)

where the subscripBV and P denote the FV and particle fields, respectively. It is empha
sized that these conditions are not all independentgked, Eq. (9) yields

(M*v*§(X* — X)) = (v* | X)(p)p = L. (35)
The particle equation of state (Eq. (9)iS=«*¢}/p*. Thus

m*x*ek

S3(X*—x)>

(MFU*§(X* — X)) = < .
_ e X GISDM (P)p

= @k(e* | X), (36)
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where Eq. (30) has been used. Substituting Eq. (36) and the FV equation opstate
K (p)rv (€s)py into Eq. (35) results in

_ (P)p (€5 |x) _
(Pev (Es)pv

V" [x)(p)p

@37

Equations (36) and (37) imply that Egs. (31) and (32) are the only independent consiste
conditions at the level of numerical solutions. For if these are satisfied, Eq. (37) yields

(©)p = (P)Fvs (38)
and it then follows from Egs. (35) and (37)
(M**8(X* —x)) = 1. (39)

In summary: the method is completely consistent at the level of the partial different
equations. That is, the exact solutions to these equations yield identical duplicate fields
the level of the numerical solutions, there are just two independent conditions that en:
the consistency of the method, namely Egs. (31) and (32).

3. NUMERICAL METHODS

3.1. Coupled FV/Particle Algorithm

The FV and particle methods are periodically used in the hybrid algorithm to solve th
respective equations. Each period is called an “outer” iteration which consists of FV &
particle “inner” iterations. The hybrid FV/particle algorithm can be designed to run in
tightly or loosely coupled manner. In this study, a loosely coupled algorithm has be
adopted in which an outer iteration is completed by running the FV code until convergel
and the particle code for a specified number of time steps. Note that tight coupling, in wh
both the FV and particle codes are run for a single time step to complete an outer iteratio
in fact a special case of loose coupling. Tight coupling is useful if time accuracy is desir
but we are interested here only in statistically steady solutions.

The early outer iterations produce a noisy solution close to a statistically stationary s
and the subsequent iterations are performed to reduce the noise. As will be discussed la
detail, time-averaging is an effective way to reduce the statistical fluctuations in the part
fields when it is applied during a statistically stationary state. Therefore time-averagin
not performed until the outer iteration is deemed to be close to a statistically station
state, say, at thie,th outer iteration. The total number of time steps to be performed in t
particle code duringgth outer iteration is then determined according to

NS = { v thesto (40)
oM if k> ko,

whereMy, 8, and M1, are positive constant parameters, taken in the present study as
2.0, and 8, respectively, unless specified otherwise. Note that, in each outer iteration
k > ko, the time-averaging is based on just mé,? particle time steps performed in that
outer iteration.
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FIG. 1. Flow chart of the hybrid FV/particle method.

The overall solution sequence can be summarized as follows. The FV code is run L
residuals are decreased to a specified tolerance valeand the required mean fields
are passed to the particle code. The particle code is then run for a certain number of
steps (cf. Eq. (40)) and the necessary quantities are transferred back to the FV code.
process is repeated until global convergence is attained. The issue of the global converg
is discussed in Subsection 4.3 in detail. The flow chart for the hybrid algorithm is showr
Fig. 1.

3.2. Finite Volume (FV) Method

As mentioned earlier, the field equations solved by the FV method are of the sa
form as the compressible Euler equations with added source terms, so they can be st
by established techniques such as time-marching algorithms. In this paper, we empl
diagonalized implicit scheme based on that of Caughey [23] with a local preconditioni
method developed by Muradoglu and Caughey [24]. The preconditioning is needec
remove the well known numerical difficulties due to eigenvalue stiffness caused by
large disparity between the characteristic wave speeds at low Mach numbers [25].
details of the diagonalized implicit scheme and the preconditioning method can be fol
in Muradoglu and Caughey [24].
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The source terms in the mean energy equation (Eq. (25)) can introduce an additional ¢
ness causing the numerical algorithm to be unstable unless an extremely small time st
used. The point implicit method developed by Bussing and Murman [27] has proven to
an effective way to remove the time step restriction set by stiff source terms. However, si
the source terms in the mean field equations are not known as functions of the depen
variables, exact linearizations for use in the pointimplicit method is not possible. Therefc
a technique similar to that devised by Palmer [26] has been developed to overcome the !
ness problem without implicit treatment of the source terms. Motivated by the observat
that large source terms compared to the convective fluxes can cause non-physical ze
negative values of density that lead to instabilities, the method is designed to limit the |
of change in density and not to allow non-physical solutions. The algorithm is as follow

(i) obtain the increment in density fiebp from solution of the continuity equation;
(ii) find the maximum increment in absolute valyés|max over the entire field, and if
it is larger than a prescribed tolerance, icg,pref, Scale the increments as

5p

op = ——
|60/ max

Olppref, (41)
whereprr is the reference density ang is a prescribed constant typically taken as 0.01;
(iii) update the density
p" = max(e, - prer, p" + 8p). (42)
wheree, is a small positive number with typical value 0.005.

This method prevents wild swings in the density field and allows the solution to rel
smoothly to the steady-state. Our numerical experience shows that this simple proce
maintains stability of the numerical algorithm even for very large source terms, e.g., col
sponding to maximum density ratio as large as 25.

The boundary conditions are specified as follows. The mean velocity and density at
inlet and the pressure at the outlet are fixed to the physical values while the pressure &
inlet and the mean velocity and density at the outlet are extrapolated from the computatit
domain. This treatment is consistent with the characteristic theory since we are intere
here only in subsonic flows.

This FV scheme accepts both a uniform or non-uniform grid but a uniform grid is us
in the present study for simplicity.

3.3. Particle Method

The particle method described here is developed to solve the particle equations in
context of the hybrid algorithm. In this method, fluid particles are modeled by an ensem
of notional particles which are distributed in the physical space and carry the intrin
properties maseY*, positionX*, fluctuating velocityu*, mass fraction¥*, and enthalpy
h*. The computational domain is overlaid by a uniform or non-uniform spatial grid for tf
purpose of estimating the particle fields from the particle properties and interpolating
FV and particle fields onto the particles as needed in the solution of the particle equati
The particle fields are required to close the FV and particle equations as well as to repre
the numerical results. In the present study, the particle fields are estimated from the patr
properties by a non-parametric kernel estimation method based on linear basis functi
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This is a cloud-in-cell (CIC) method [31] in which the particle fields on each grid noc
are approximated as weighted ensemble of the particles in the neighboring cells of
node. The details of the method can be found in [32]. The mean quantities at the pari
positions are interpolated from the nodal values of the corresponding FV or patrticle fie
using linear splines. Note that the spatial derivatives appearing in the particle equati
are first evaluated at the nodes using second order central differences and then interpc
on the particle locations. It is emphasized that the FV mean field derivatives, for exam
aU; /ox j» are evaluated consistently with the way the same derivatives are treated in the
code. The kernel estimation, evaluation of the spatial derivatives, and interpolation sche
are all second order accurate yielding second order accuracy in space. In this work, the
grid is used both in the FV and particle methods but this is not required in general.
The system of particle evolution equations is integrated forward in time using a multist
second order scheme. Each particle moves at its own velocity
axs

g =Urun (43)

and definingQp(x, t) andQry (X, t) as the particle and FV fields, respectively, all the othe
particle equations (Egs. (12), (14), (17), and (19)) can be written in vector form as

dgi"(®
dt

= §, (X*(1), ¢" (1), Qp(X*[t], 1), Qrv (X*[t], 1)), (44)

whereg;" is the vector of the dependent variables &jdis the vector representing the
source terms on the right hand-side of the particle equations. Note that the mean del
and Reynolds stresses are the only particle fields used in the particle equations sinc
mean velocity and pressure are provided by the FV method.

In advancing the particle properties from time lené, = nAt) to leveln + 1, the solu-
tions at timetn;.1/2 = %(tn + tny1) are first predicted using the explicit Euler method

At ~
e s > (UM +um), (45)
. " At
P n+1/2 _ &, n ?S;In’ (46)

whereS;" iswritten forS;" = S, (X*", ¢*", Qz", Q&%) Inthisintermediate ste@p"/? and

“;r\‘,”/z are also evaluated by interpolating the corresponding FV and particle fields on
predicted particle positions.
In the next step, all the particle equations except for the convection are integrated to y

the new particle properties using the midpoint rule
¢i*n+1 — " 4+ AtS;in-H/z, (47)

and the new particle position is subsequently calculated as

At ~

xi*n+1 Xi*n 5 (ui*n ui*n+1) At 'i n+1/2’
% At ,_~ ~ At

=X Nz - (2U i*"”/z - Ui*”) + > u;"”*l, (48)
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where Eq. (45) has been used. Notice that convection due to the mean and the fluctu
velocities are evaluated by the midpoint and the trapezoidal methods, respectively.
Finally the particle fields are evaluated using the kernel estimation method based or
particle properties at the new time level and then the mean quantities are interpolate
the new particle locations to obta@"* and Q:y™. The overall scheme consists of a
combination of midpoint and trapezoidal methods yielding second order accuracy in tir

4. RESULTS AND DISCUSSION

4.1. Test Problem

Numerical properties of the hybrid method have been studied through 1D react
stochastic ideal flows of a premixed methane—air mixture in a constant-area channe
sketched in Fig. 2. The stoichiometric gas mixture enters the channel at high tempera
and combustion occurs by auto-ignition.

Asfarasthe thermochemistry is concerned, variations in pressure are negligible comp
to the pressure itself. Hence the enthatpig conserved, and the mass fractidhsgepend
solely on residence tinig (see Egs. (14) and (15)). Thus all the thermodynamic variable
can be pre-calculated and tabulated as function of the residence time.

The methane—air combustion mechanism employed here consists of 16 species and -
actions [28]. The species conservation equations are solved separately using the CHEN
library [29] and a look-up table is formed for the quantitieshe rate of change in the sen-
sible internal energys, the sensible internal energy, and the density as functions of the
residence timg . The first two quantities; andés, are then interpolated on the particles as
needed in the particle equations whilendp are used for comparison with those computec
by the particle and FV methods.

The time steps taken in the FV and particle methods are specified through CFL numt
The CFL number in the FV method is defined in the usual way as

(CFL)py = ma% AiAtey | (49)

AX

wherei;, Atgy, andAx are the characteristic wave speeds corresponding to the precor
tioned system of the field equations, the time step taken in the FV method and the che
teristic mesh interval, respectively. In a similar way, the particle CFL number is defined

U |maxAtp

CFL)p =
(CFLp A

(50)

—— unbumt

reaction zone
=3
£
3
2

FIG. 2. Sketch of 1D reacting stochastic ideal flow.
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whereU maxandAtp are the maximum mean velocity in magnitude and the time step us
in the time-integration scheme for the particle equations.

In allthe results presented here, the boundary conditions are specified as follows. At th
let boundary, the mean velocity, density, and temperature are set ediiaktd 0.40 m/s,
pin=0.2448kg/n?, and T;, = 1500K and the fluctuating velocity pdf is Gaussian with
mean(u);, =0 and variancéu?);, = 1.0 m?/s’. Thus the rms velocity fluctuation is about
9.6% of the mean velocity at the inlet. At the exit boundary, the pressure is fixed
P.=101,325 Pa. Note that the specified dengitycorresponds to the density of the stoi-
chiometric methane—air mixture at temperat'ﬁrreand pressur@.. The length of the chan-
nel is chosen to bé& =0.04 m. At the beginning of the simulation, the particles are ran
domly distributed in physical space and the particle properties are initialized to yield 1
particle fields equal to the inlet boundary conditions. The particle mas$geate initialized
in such a way that the total mass of the particles in each cell is equivalent to the mass o
fluid in the cell occupied. The mean fields in the FV method are initially set equal to t
non-reacting uniform flow corresponding to the boundary conditions.

Figures 3 and 4 show stationary distributions of the mean density and the mean se
ble internal energy, respectively. For the simulation, the computational domain is divic
into Ny =128 equal cells and initialliN . = 40 particles are randomly distributed in each
cell. The CFL numbers in the FV and particle methods are fixedC&t)ry =8.0 and
(CFL)p =0.3, respectively. After reaching a stationary solution, time-averaging is pe
formed overNtA = 64000 time steps taken in the particle code to get smooth solutions. T
details of the time-averaging method will be discussed later. Since the mean density
sensible internal energy are represented as duplicate fields, the FV and particle solu
should agree for consistency. As can be seen in these figures, the remarkable agree
between the FV and particle fields confirms that the consistency conditions are well s
fied in the present hybrid method at the level of numerical solution. The small differenc
observed between the FV and particle solutions are mainly due to lack of grid resolut
in the FV method. The fieldsch and (€s)ch plotted in the figures are obtained from the
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FIG. 3. Stationary distribution of the mean densityN,. =40, N, = 128 Nta=6400Q (CFL), =0.3, and
(CFL)py =8.0.
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FIG. 4. Stationary distribution of the mean sensible internal enegg\Np. =40, N, =128 Nta=6400Q
(CFL)p =0.3, and CFL)py =8.0.

chemistry model based on the mean residence time defined as

X
£ = / dx (51)
o UX)
whereU (x) is the mean velocity. Hence these fields are not expected to agree with the

and particle solutions.

For the same case, the scatter plot of the fluctuating velocity and the stationary distribu
of (u*2 | x) are depicted in Figs. 5 and 6, respectively. These figures indicate that the varia
of the fluctuating velocity decreases considerably in the reaction zone mainly due to Iz

w
LS B

u*
o

2

.3:_

_4:, AR R R L

0 0.25 0.5 0.75 1
x/L

FIG. 5. Scatter plot of the fluctuating velocity. Npc=40, N, =128 Ntap=64000Q (CFL), =0.3, and
(CFL)py =8.0.
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FIG.6. Stationary distribution ofu*? | x). Npc =40, N, = 128 Nta=6400Q (CFL)p =0.3,and CFL)py =
8.0.

positive mean velocity gradient present in this region. In the particle equations (cf. Eq. (1
this effect is represented by the term

du]—k

a0 \*
= —u* 52
dt u|<3Xi> + (52)

The apparent preponderance of particles near a sharp lower bouhdgace in Fig. 5 is
due to the fact that the particles with negative fluctuating velocity experience the posi
mean velocity gradient longer than those with the positive fluctuating velocity. Therefo
the magnitude of the negative fluctuating velocity is more reduced than that of the posi
fluctuating velocity.

It is found that the consistency condition expressed by Eq. (31) is satisfied sufficier
well so that no correction is performed on the fluctuating velocity. For the particular ce
shown in Fig. 5, for instance, the magnitude of the mean fluctuating velocity normaliz
by its rms value{u* | x)/u’, remains smaller than 18 everywhere.

4.2. Numerical Errors

The purpose of this subsection is to identify and to quantify the various numerical err
that arise in the hybrid method due to finite values of the number of particles pégell
the time step taken in the time-integration scheme for the particle equatipnand the
characteristic cell sizax. Note that since a steady-state is reached, the time step taker
the FV method has no effect on the final solution. Therefore, the only time-stepping er
comes from the finite time step taken in the particle method.

In stochastic methods, convergence of numerical algorithms can be interpreted in ei
a strong or a weak sense [33]. Weak convergence requires convergence of mean quatr
obtained by the numerical method to the actual means rather than the convergence c
particle properties as needed for strong convergence. Since mean quantities are of ess
interest rather than individual sample paths, it is appropriate to seek weak convergenc
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this hybrid method. When estimating a mean quar{ty at a fixed position and time in a
numerical simulation witiNp¢ particles per cell, time step taken in the particle algorithr
At,, and characteristic cell siz&x, the numerical error in the estimated mean denoted b
{Q}Nye.ax.At, IS @ random variable and can be decomposed as

€Q = {Qlnpeaxat, — (Q) = g + Do = ¥q + Bq + Hq + Tq, (53)

whereXq andDq are the statistical and the deterministic errors, respectively. The det
ministic errors are further broken into the biBg, the spatial erroHg, and the temporal

error Tg. The statistical error arises from the random inlet boundary conditions in the p
ticle method. The bias is the deterministic error caused by the statistical fluctuations in
particle fields used in the particle evolution equations [30]. The spatial error results fri
the spatial discretization of the field equations in the FV method, as well as, from the kel
estimation and interpolation in the particle method. As mentioned earlier, the temporal e
is solely due to finite time step used in the time-integration scheme for the particle equati
These four types of errors are studied and quantified individually. Note that all the err
are normalized by the reference values for the corresponding particle and FV fields.

4.2.1. Statistical error. The statistical error in the estimated particle fig@hn,. ax.at,
is given by

2o = {Qnpeaxat, — {QINpe.ax.aty) (54)

and it is measured by its standard error defined as

SQ = [Npcvar({Q}Npc,AX,Atp)}1/2. (55)

The rms statistical errarg is thereforeN Ecl/ 2Sy. As Ny approaches infinitySg becomes
independent oN ¢ so that the rms statistical error scales\l;gg“ 2,

Table Il shows the dependence of the standard errdigyfor the particle fieldsop,
(€s)p, 0, and (u*2 | x). In evaluating the standard error, the variance of each quantity
estimated along the length of the channel from 4000 samples and averaged over all the
points in the domain. Instead of different independent trials, the samples are obtained f
the solutions at consecutive time steps during the stationary state. The paraipeier
varied from 20 to 640. It is observed that the statistical error is significantly largeaid
(u*?] x) than inpp and(€s)p but the standard error remains approximately constant fc
each of the quantities showing the expected scaling.

TABLE Il
The Standard Error versus Number of Particles per Cell

NPC Sﬂ—P Sgs)p S Su*zm

20 216x 102 491x 102 5.88x 107! 475x 10
40 227x 1072 5.20x 1072 5.86 x 102 469x 10
80 214x 1072 4.94x 1072 5.66 x 1072 4.49x 10
160 213x 1072 4.93x 102 5.57x 1072 4.49x 101
320 211x 10 4.90x 102 5.62x 1072 438x 10
640 209 x 1072 4.89x 1072 5.50x 1072 427x 101
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TABLE Il
The rms Statistical Error Times N2 versusNra

Nra N7x o7 Nrx o NTA G2
32 222x 1072 4.88x 107! 9.62x 107!
128 179x 1072 6.29x 101! 9.91x 101
512 144x 1072 574x 10 8.36x 107!
2048 176 x 102 6.96x 107! 8.09x 10!
8192 212x 1072 479x 10 9.21x 101

32768 239x 1072 6.57x 107! 10.00x 107?

Due to the slow convergence of the statistical error wth, the required number of
particles increases dramatically as the desired error level is decreased and quickly bec
computationally prohibitive. For example, while it requires only about 100 particles p
cell to achieve an overall rms statistical error level of 3%, must be increased to 2500
to reduce the error to level of 1%. However, instead of increasing the number of partic
the statistical error can be reduced through a time-averaging procedidg, tifne steps
are taken in the particle code during an outer loop after reaching a stationary solution,
time-averaged mean f¢Q}n,. ax at, is defined as

Nta
<{Q}Npc,Ax,Atp>NTA = Ni‘l’A Z{Q}wzc,Ax,Atp~ (56)
n=1

Thus, for largeNTa, the rms statistical error in the time-averaged field scaleN gs\ra) ~%/2.

Table Il presents the rms statistical ereag times NTl,/f againstNra for the particle
fields pp, 0, and (u*? | x) over the rangeNta between 32 and 32,768. As can be seen i
the table,NTl,/fch remains approximately constant over this range indicating the expect
scaling of the rms statistical error witra. In the tableoq is estimated from 100 sta-
tistically independent simulations and averaged over the entire computational domain.
the calculations are performed for the fixed parame¥ges= 10, Ny =128, (CFL)p =0.3,
and CFL)gry = 8.0.

4.2.2. Bias. The bias is the deterministic error caused Wy, being finite. As re-
marked earlier, the bias is one of the dominant errors in the self-contained particle met
[12, 13]. Using the error decomposition in Eq. (53), the bias in the estimated particle fi
{Q}N,e.ax.at, CAN be written

Bo = ({QINpeax.aty) — {Qlos,ax. Aty (57)

where{Qloo, ax. at, = lIM N, 00 { Q}Nye. ax.at,- ThEe Main source of the bias is the statistical
fluctuations in the particle fields used in the particle evolution equations. Both theoreti
analysis and numerical experiments [30, 13] have shown that the bias scalgL%. as

In Fig. 7, the bias is plotted againsl‘;c1 for the particle fieldgu*? | x) and o, at the
locationx/L = 0.389 over the rangl,c from 20 to 640. The approximate linear relationship
between the bias anltslgc1 confirms the expected inverse scaling. The bias is isolated
follows. The statistical error is kept small by fixing the proddgiNta=5.2 x 1P for
which the overall rms statistical error is expected to be of ord2x210-4. The bias-free
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FIG.7. Bias againsN,;c1 atx/L =0.389. The number of particles per cél|,. ranges from 20 to 640. The
lines show linear-least-squares fits.

variable{ Q}o, ax. at, IS €Stimated by linear extrapolationmgc1 to Ngg =0 using the values
at Npc =640 andN,. = 1280. Then the bias is calculated from Eq. (57). Itis found that th
maximum bias occurs ifu*? | x). To give an idea about the distribution of the bias in the
entire computational domain, it is plotted in Fig. 8 for? | x) along the channel. As can
be seen in this figure, the bias is small, i.e., its maximum value is less than 1% even
Npc=20. This is an important result showing that the bias is not a dominant error in t
hybrid method. Since the statistical error can be reduced effectively by time-averaging
the bias is small, it is possible to use many fewer particles in the hybrid method than in
self-contained particle algorithm to achieve a given level of accuracy.

0.015
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001f e N, =80
_ N, = 320
0.005 |-
gL A e
s of
o [
-0.005
001fF
N TR RS RSN S TN
00155 0.5 0.5 0.75 1
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FIG. 8. Variation of bias in(u*? | x) along the channel for various valuesf..
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FIG. 9. Spatial error againshx/L. The normalized cell siz&x/L varies between /L6 and }¥512. The
slopes are obtained from linear-least-squares fits to each set of data.

4.2.3. Spatial error. The spatial error results from the spatial discretization in the F\
method and also from the kernel estimation and interpolation in the particle algorithm. T
spatial error i Q}n,,.ax.at, IS

Hqo = {Qloo.ax.at, — {Qloc.0.at,s (58)

where{Q}.0.at, = IMN, 00, ax>0{ Q}N,c.ax.at,- The spatial discretization [23] and the
kernel estimation and interpolation schemes [32] are all second order accurate, so the s
error is expected to scale ax?. This is verified in Fig. 9 for the selected mean and particle
fields U, Py, (U] X), and (&s)p over the rangeAx/L from 1/16 to 1/512 wherelL is
the length of the channel. In all the simulations, the paranméigis fixed at 16 and Npc

is varied to keep the total number of particles constariti@iNy = 1.28 x 10° which is
equivalent toNpc = 1000 forN, = 128. Therefore, the rms statistical error and the bias ar
estimated to be of order@ x 10~* and 104, respectively. ThehQ}w.0.at, is estimated
using Richardson extrapolation to the limik — 0. Thus the spatial error is obtained from
Eq. (58) and averaged over the computational domain.

4.2.4. Temporal error. In this hybrid method, the sole source of the temporal error i
the finite time steps taken in the time-integration scheme in the particle method. Si
our interests lie in the steady-state solutions, the FV method does not contribute to
time-stepping error if it is fully converged. The temporal efferin {Q}n,. ax.at, IS

To = {Qlx.0.at, — {Ql}x.00s (59)

where{Q}o.00 = M, 00, a0, aty—0{ Q) Npe. Ax, Aty -

Figure 10 illustrates a log—log plot of the temporal erfdg| against the time step
taken in particle method for the particle fields? | x), (¢s)p, andpp over the range of the
particle CFL number@FL)p between 0.2 and 2.0. Note that the time step is normal-
ized by the average residence tifiedefined as the average time for a particle to trave
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FIG. 10. Temporal error againgits/T,. The particle CFL numbeiCFL)p varies between 0.2 and 2.0. The
slopes are obtained from linear-least-squares fits to each set of data.

from the inlet to the exit boundary. All the calculations are performed for the paramet
Ny =256, Npc =500, andNta = 10°. Therefore, the bias and the rms statistical error ar
estimated to be of order 10 and 16 x 104, respectively. The spatial error is predicted
to be of order 24 x 102 which is larger than the smallest time-stepping error in the figur
but the dominant effect okt is assumed to be through the temporal efiigr Richardson
extrapolation is used to predif®} 0,0 in the limit asAtp — 0. The slopes in the figure
are obtained from linear-least-square fits and are found to be slightly larger but very cl
to the expected value 2.0 showing the second order accuracy of the time-integration sct
used to integrate the particle equations.

4.3. Convergence

The numerical errors have been discussed and quantified in the previous subsectior
convergence of the hybrid method will now be examined in detail. In a FV method, cc
vergence is usually measured by residuals and a FV solution is considered to be conve
when the magnitude of residuals is smaller than a specified tolerance value. In the hy
method, however, a number of outer iterations are usually required to solve the flow fi
and the source terms appearing on the right hand side of the field equations are upc
at the end of each outer iteration by passing the required particle fields from the part
code to the FV code. Even when a statistically stationary solution has been reached
noisy particle fields feed back significant statistical fluctuations into the source terms :
thus cause a jump in the convergence history of the FV solutions at the beginning of
inner FV iterations as shown in Fig. 11. The data in the figure are taken from a numer
simulation of 50 outer iterations with the parametBig =40, N, =128 (CFL)p =0.3,
and CFL)ry = 8.0. Time-averaging is turned off throughout the simulation. An inner pal
ticle iteration of 20 time steps is performed between two adjacent FV cycles but it has
been displayed in the figure. Here the residual is defined as the mean of absolute resi
of the continuity, momentum, and energy equations averaged over the entire computati
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FIG.11. Convergence history of the FV solutions over 50 outer iteratibigs= 40, N, = 128 (CFL)p, =0.3,
and CFL)=8.0.

domain. As can be seen in this figure, the residual is quickly decreased to a small v:
in each FV cycle but the global convergence is not clearly shown even in the statistic:
stationary state. Similar results have also been observed in previous studies; see, e.g., (
[15]. The residuals obtained at the beginning of the FV cycles are a good measure for
global convergence of the FV solutions and will hereafter be referred to as “initial residua
or simply “residuals.”

Since the jump in the convergence history is attributed to the statistical error in the sot
terms, the initial residuals may be expected to converg(é\lga\lwgfl/z. This is verified
in Figs. 12 and 13 which show log—log plots of the initial residuals versus the numt
of particles per celNyc and the time-averaging parameteta, respectively. The slopes

'100_— @)
" Slope = -0.505

s |

3
S
2 L
[
[

10"

2 L AR | L ool L L
1055 10° 10° 10*

N

pc

FIG. 12. Initial residual of FV solutions againd,. without time-averagingN,. ranges from 20 to 2400.
The slope is calculated from linear-least-squares fit.
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FIG. 13. Initial residual of FV solutions again®ta. Nta ranges from 8 to 262144 angl=2.0. The slope
is calculated from linear-least-squares fit.

of linear-least-square fits to each set of data are slightly smaller but very clese.%o
that clearly illustrates the expected scaling. The data plotted in Fig. 12 are obtained fi
the statistically stationary solutions fd¥,. ranging between 20 and 2400 and the othe
parameters are fixed &, =128 (CFL)p =0.3, and CFL)ry =8.0. Note that no time-
averaging is applied in this case. In Fig. 13 on the other hand, all the parameters are
the same as in Fig. 12 but the number of particles per cell is fixdd,a&= 40 and the
time-averaging is performed for various value\ih ranging between 8 and 262,144.
Alog—log plot of the initial residuals against work units (WUSs) is also displayed in Fig. 1
for the same case. (A work unit is defined here as the total computational labor require
advancing the particle code for a single time step. Note that the computational work don
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FIG. 14. Convergence history of initial residual of FV solutions. Time-averaging is started after 200 ouf
iterations withg = 2.0. The slope is calculated from linear-least-squares fit.



366 MURADOGLU ET AL.

the FV code is neglected here since it accounts for less than 1% of the overall computati
workinterms of CPU times.) This figure clearly shows the effect of the time-averaging on'
global convergence of the FV solutions: the initial residuals remain approximately const
in the region where a statistically stationary solution is reached but no time-averagin
carried out, i.e., between Wl3s600 and WUs=4000, and start decreasing immediately
when the time-averaging is applied. It is assumed for this particular case that the statiol
statek >k, is reached when all the initial particles leave the computational domain. T
slope of the linear-least-square fit is found to be abel66 but it is expected to approach
asymptotically to—0.5 as WU— oo.

It is difficult to measure the global convergence of the particle method since there are
corresponding residual as in the FV method. However, changes in the particle fields ca
monitored for this purpose. The change in the particle fi€p is defined as

AMQY = Q& — (¥

: (60)

where(Q)(F'f) is the time-averaged value of the particle fi¢@)r evaluated at the end of
the kth outer loop. Log—log plots oA pp and A(u*? | x) versus work units are shown in
Figs. 15 and 16, respectively. As can be seen from comparison of these figures with Fig
the patrticle fields converge in a similar way to the FV solutions. In other words, if the tim
averaging is turned off, the changes in the particle fields remain approximately constar
the region of statistically stationary solution but they immediately start decreasing wt
the time-averaging is turned on.

The time-averaging parametgr= 2.0 has been used in all the results presented so f:
without justification. To determine the optimal valuedefog—log plots of the initial residual
versus work units are displayed in Fig. 17 o= 1.5, 2.0, 4.0, and 8.0. As can be seen in
this figure, the optimal value f that provides the best reduction in the residuals for th
given computational work is about 2.0.
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FIG. 15. Convergence history of particle density field. Time-averaging is started after 200 outer iteratic
with 8 =2.0. The slope is calculated from linear-least-squares fit.
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FIG. 16. Convergence history of particle field*? | x). Time-averaging is started after 200 outer iterations
with 8 =2.0. The slope is calculated from linear-least-squares fit.

5. CONCLUSIONS

A consistent, loosely coupled, hybrid FV/particle method has been developed for the F
equations of turbulent reactive flows. The method is designed to combine the best feat
and to avoid the deficiencies of the FV and particle methods. Consistency is satisfied a
level of the equations solved by the FV and particle methods. Therefore the consiste
conditions are easily fulfilled. A loose coupling strategy is adopted in the hybrid meth
that aims at statistically stationary solutions, i.e., time-accurate solutions are excluded

10

10°

-
S

T T T T T T T T ;

Residual

10°

No time averaging

IATRER |

ol L
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Work Units

10*

10°
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FIG. 17. Convergence histories of initial residual of FV solutions for various valugs dfme-averaging is
started after 200 outer iterations.
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The method has been implemented and tested in the simple setting of 1D reactive stoc
tic ideal flow to facilitate comprehensive numerical experiment. However, the extension
the method to higher dimensions is straightforward.

A combination of midpoint and trapezoidal rules has been employed to integrate
particle evolution equations in time and a diagonalized implicit FV algorithm has be
adopted for solution of the field equations. A preconditioning method is incorporated ir
the FV scheme to remove the eigenvalue stiffness caused by large differences bety
characteristic wave speeds at low Mach numbers. A simple algorithm is also develope
eliminate the chemical stiffness induced by large source terms in the field equations. E
the FV and particle methods are found to be very robust.

The accuracy of the hybrid method has been quantified through a detailed study of
merical errors. Four types of error have been identified. Statistical error is found to scal
(NpcNta)~Y2 as expected. The spatial and temporal errors scalexdsind At3, respec-
tively. Bias is shown not to be a dominant error in the hybrid method and scaMa&las

A comprehensive study has been performed to demonstrate convergence of the hy
method. The global convergence of the method has been verified. The initial residuals o
FV solutions and the changes in the particle fields evaluated at the end of successive ¢
iterations are found to be good measures for global convergence of mean and particle fi
respectively. The hybrid method is shown to converge at the same rate as the statistical ¢

The optimal strategy for the time-averaging has also beeninvestigated. The time-avere
is started when a statistically stationary solution is reached and doubling the total nurr
of time steps to be taken in the particle algorithm during each successive outer cycl
demonstrated to give the best asymptotic convergence rate.

APPENDIX

The molecular weight of speciesis W,,, and its gas constant is

R
RO( = Wa’ (61)

whereR is the universal gas constant.

Allenergy variables are defined from the specific enthalpy of forméujai the reference
temperaturel, (T, =29815 K), and from the constant-pressure specific lugatT) for
each species. Note that thermodynamic databases are available giving the vhjiasadf
of cp, (T) as polynomials off . The specific enthalpy is

T
he(T) = h? +/ Cp, (THAT, (62)
To

and the specific internal energy is

-
€(T)=he(T) = R,T =€ +/ C, (THdT, (63)
To

where

€ =h-RT, (64)
Cy, (T) = Cp, (T) = Ry, (65)
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and the specific sensible internal energy is defined by
€5, (T) = €(T) — €5°, (66)
where
e’ =¢€y—C To, (67)

with cga =c,, (To).
For a mixture, the specific enthalpy is given by

h(Y. T) =) Yaho(T). (68)

Inan obvious notation, similar equations defiagY, T), cp(Y, T), ¢, (Y, T),andR(Y, T).
The conservation equations can be obtained in a number of ways. One is to different
Eq. (8), i.e.,

9 _~ de* dX* 9
ot (po) <m at ( X) —Mm'¢ dt ox ( X)>
_/d¢* D
(g | %) = o e ol ©9)
For¢* =1, this yields the particle mean mass conservation equation
ap 0 _~
E+Tm(pu')_o' (70)

For¢*=U}, Eq. (69) and the mean of Eq. (13) yield the mean momentum equation

I T
a(PUJ)‘f‘af)(i[P(Ui U; [ x)] = ax; (71)

Using the identityJ | = Uj—‘ + uj, the mean momentum equation can be rewritten as

o _~ 8 - o _ .
&(pUjH—a[pUin + pdij] :_Txi[p(ui uj | x)]. (72)

The mean energy conservation equation is obtained by substitpitiag:} into Eq. (69)

D (oo = (S
at = P\ at

[ * %
x> -l 1) (73)

Substitutingh* =€ + p*v* + >, €3°Y2 into Eq. (15) and then taking the mean results in

Car [ = [ -ZeCar) @

and the time derivative of the consistency conditjorfv*s (X*[t] — x)) =1 yields

do*
dt

x> _ =0. (75)

LSOt e D G . _—/dv
<m E(S(X [t] —x) — m*v* —— — & (X™[t] —x)> —p<— %

dt 09X dt
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Combining Egs. (73), (74), and (75) gives

a .. d Ui -
il — [o(UXe* = — 76
at(p65)+8xi [p(Uies [ X)] Pox T & (76)
whereé is given by Eq. (26).
From the above, we deduce the equation for
U R
esEpés-i-é,O iU (77)
to be
0865 0 .~
5t +3Xi[ i(& + p)]
= &4+ p (Ui — U — —ptures 1% — 0y (it [ x) (78)
= paxi i i % Py €g ]3Xi oAU Uj .

The evolution equation for the fluctuating particle velocity is obtained from its definitio
i.e.,,u* =U* — U* and from Egs. (13), (21), and (72):

du 1 /0p\* a0; ,./a0;\"
1 __~- (2 - Ly =
dt p* \ 90X at X
a0 \* 1 1\/ap\* 1/8 _ *
- = =) &= Zprur . (79
“'<axi) +<p* p*>(axj> +p*(axi“’<“'“1'x>]> (79)
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